-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathControl.jl
290 lines (234 loc) · 8.3 KB
/
Control.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# make your scripts automatically re-activate your project
cd(@__DIR__)
using Pkg; Pkg.activate("."); Pkg.instantiate()
# load packages
using Flux, DiffEqFlux, DiffEqSensitivity
using DifferentialEquations
using Plots
using BSON
using Statistics
using ReverseDiff, Zygote, ForwardDiff
using LinearAlgebra
using Random
using BenchmarkTools, Test
#################################################
# read parameters from command line
lr = 0.0015f0 #parse(Float64,ARGS[1]) #0.05
epochs = 400 #parse(Int,ARGS[2]) #100
slurmidx = 1 #parse(Int,ARGS[3]) #1
numtraj = 256 # number of trajectories in parallel simulations for training
numtrajplot = 256 # .. for plotting
# time range for the solver
dt = 0.01f0 #0.001f0
tinterval = 0.02f0
tstart = 0.0f0
Nintervals = 150 # total number of intervals, total time = t_interval*Nintervals
tspan = (tstart,tinterval*Nintervals)
# Hamiltonian parameters
Δ = 20.0f0
Ωmax = 10.0f0 # control parameter (maximum amplitude)
# loss hyperparameters
C1 = Float32(1.0) # evolution state fidelity
C2 = Float32(0.0) # action amplitudes
C3 = Float32(0.0) # evolution state fidelity for last few steps!
struct Parameters{flType,intType,tType}
lr::flType
epochs::intType
numtraj::intType
numtrajplot::intType
dt::flType
tinterval::flType
tspan::tType
Nintervals::intType
Δ::flType
Ωmax::flType
C1::flType
C2::flType
C3::flType
end
myparameters = Parameters{typeof(dt),typeof(numtraj), typeof(tspan)}(
lr, epochs, numtraj, numtrajplot, dt, tinterval, tspan, Nintervals,
Δ, Ωmax, C1, C2, C3)
################################################
# Define Neural Network
# state-aware
nn = FastChain(
FastDense(4, 256, relu, initW = Flux.glorot_uniform, initb = Flux.glorot_uniform),
FastDense(256, 64, relu, initW = Flux.glorot_uniform, initb = Flux.glorot_uniform),
FastDense(64, 1, softsign, initW = Flux.glorot_uniform, initb = Flux.glorot_uniform))
p_nn = initial_params(nn)
###############################################
# initial state anywhere on the Bloch sphere
function prepare_initial(dt, n_par)
# shape 4 x n_par
# input number of parallel realizations and dt for type inference
# random position on the Bloch sphere
theta = acos.(2*rand(typeof(dt),n_par).-1) # uniform sampling for cos(theta) between -1 and 1
phi = rand(typeof(dt),n_par)*2*pi # uniform sampling for phi between 0 and 2pi
# real and imaginary parts ceR, cdR, ceI, cdI
u0 = [cos.(theta/2), sin.(theta/2).*cos.(phi), false*theta, sin.(theta/2).*sin.(phi)]
return vcat(transpose.(u0)...) # build matrix
end
# target state
# ψtar = |up>
u0 = prepare_initial(myparameters.dt, myparameters.numtraj)
###############################################
# Define ODE
function qubit(u,p,t)
# expansion coefficients |Ψ> = ce |e> + cd |d>
ceR, cdR, ceI, cdI = u # real and imaginary parts
# Δ: atomic frequency
# Ω: Rabi frequency for field in x direction
Δ = p[end-1]
Ωmax = p[end]
nn_weights = p[1:end-2]
Ω = (nn(u, nn_weights).*Ωmax)[1]
dceR = 1//2*(ceI*Δ+cdI*Ω)
dcdR = -cdI*Δ/2 +ceI*Ω/2
dceI = 1//2*(-ceR*Δ-cdR*Ω)
dcdI = cdR*Δ/2-ceR*Ω/2
return [dceR, dcdR, dceI, dcdI]
end
# normalization callback
condition(u,t,integrator) = true
function affect!(integrator)
integrator.u=integrator.u/norm(integrator.u)
end
cb = DiscreteCallback(condition,affect!,save_positions=(false,false))
# get control pulses
p_all = [p_nn; myparameters.Δ; myparameters.Ωmax]
# define ODE problem
prob = ODEProblem{false}(qubit, vec(u0[:,1]), myparameters.tspan, p_all,
callback=cb
)
#########################################
# compute loss
function g(u,p,t)
ceR = @view u[1,:,:]
cdR = @view u[2,:,:]
ceI = @view u[3,:,:]
cdI = @view u[4,:,:]
p[1]*mean((cdR.^2 + cdI.^2) ./ (ceR.^2 + cdR.^2 + ceI.^2 + cdI.^2))
end
function loss(p, u0, myparameters::Parameters; sensealg = ForwardDiffSensitivity())
pars = [p; myparameters.Δ; myparameters.Ωmax]
function prob_func(prob, i, repeat)
# prepare initial state and applied control pulse
u0tmp = deepcopy(vec(u0[:,i]))
remake(prob,
p = pars,
u0 = u0tmp,
callback = cb
)
end
ensembleprob = EnsembleProblem(prob,
prob_func = prob_func,
safetycopy = true
)
_sol = solve(ensembleprob, Tsit5(), EnsembleThreads(),
sensealg=sensealg,
saveat=myparameters.tinterval,
dt=myparameters.dt,
adaptive=true, abstol=1e-6, reltol=1e-6,
trajectories=myparameters.numtraj, batch_size=myparameters.numtraj)
A = convert(Array,_sol)
loss = g(A,[myparameters.C1,myparameters.C2,myparameters.C3],nothing)
return loss
end
#########################################
# visualization -- run for new batch
function visualize(p, u0, myparameters::Parameters; all_traj = true)
# # initialization
u = deepcopy(u0)
pars = [p; myparameters.Δ; myparameters.Ωmax]
function prob_func(prob, i, repeat)
# prepare initial state and applied control pulse
remake(prob,
p = pars,
u0 = vec(u0[:,i]),
callback = cb
)
end
ensembleprob = EnsembleProblem(prob,
prob_func = prob_func,
safetycopy = true
)
u = solve(ensembleprob, Tsit5(), ensemblealg=EnsembleThreads(),
saveat=myparameters.tinterval,
dt=myparameters.dt,
adaptive=true, abstol=1e-6, reltol=1e-6,
trajectories=myparameters.numtrajplot, batch_size=myparameters.numtrajplot)
ceR = @view u[1,:,:]
cdR = @view u[2,:,:]
ceI = @view u[3,:,:]
cdI = @view u[4,:,:]
infidelity = @. cdR^2 + cdI^2 / (ceR^2 + cdR^2 + ceI^2 + cdI^2)
meaninfidelity = mean(infidelity)
loss = myparameters.C1*meaninfidelity
@info "Loss: " loss
fidelity = @. ceR^2 + ceI^2 / (ceR^2 + cdR^2 + ceI^2 + cdI^2)
mf = mean(fidelity, dims=2)[:]
sf = std(fidelity, dims=2)[:]
# re-compute actions
arrayu = Array(u)
Ωlist = []
for i = 1:(size(arrayu)[2])
Ω = vec(nn(arrayu[:,i,:],p).*myparameters.Ωmax)
push!(Ωlist, Ω)
end
Ωlist = hcat(Ωlist...)
ma = mean(Ωlist, dims=1)[:]
sa = std(Ωlist, dims=1)[:]
pl1 = plot(0:myparameters.Nintervals, mf,
ribbon = sf,
ylim = (0,1), xlim = (0,myparameters.Nintervals),
c=1, lw = 1.5, xlabel = "steps", ylabel="Fidelity", legend=false)
pl2 = plot(0:myparameters.Nintervals, ma,
ribbon = sa,
ylim=(-myparameters.Ωmax,myparameters.Ωmax), xlim = (0,myparameters.Nintervals),
c=2, lw = 1.5, xlabel = "steps", ylabel="Ω(t)", legend=false)
if all_traj
plot!(pl1, fidelity, legend=false, c=:gray, alpha=0.1)
plot!(pl2, Ωlist', legend=false, c=:gray, alpha=0.1)
else
plot!(pl1, 0:myparameters.Nintervals, fidelity[:,end], c=:gray, lw = 1.5, legend=false)
plot!(pl2, 0:myparameters.Nintervals, Ωlist[end,:], c=:gray, lw = 1.5, legend=false)
end
pl = plot(pl1, pl2, layout = (1, 2), legend = false, size=(800,360))
return pl, loss
end
###################################
# training loop
# optimize the parameters for a few epochs with ADAM on time span Nint
opt = ADAM(myparameters.lr)
list_plots = []
losses = []
for epoch in 1:myparameters.epochs
println("epoch: $epoch / $(myparameters.epochs)")
local u0 = prepare_initial(myparameters.dt, myparameters.numtraj)
_dy, back = @time Zygote.pullback(p -> loss(p, u0, myparameters,
sensealg=InterpolatingAdjoint()), p_nn)
gs = @time back(one(_dy))[1]
push!(losses, _dy)
if epoch % myparameters.epochs == 0
# plot every xth epoch
local u0 = prepare_initial(myparameters.dt, myparameters.numtrajplot)
pl, test_loss = visualize(p_nn, u0, myparameters)
println("Loss (epoch: $epoch): $test_loss")
display(pl)
push!(list_plots, pl)
end
Flux.Optimise.update!(opt, p_nn, gs)
println("")
end
# plot training loss
pl = plot(losses, lw = 1.5, xlabel = "some epochs", ylabel="Loss", legend=false)
###################################
# Serialization
bson("Data/ODEControlCont-epochs="*string(myparameters.epochs)*"_numtraj="*join(string.([myparameters.numtraj,myparameters.numtrajplot]), '_')*"_"*string(slurmidx)*".bson",
Dict(:losses => losses, :popt => p_nn, :lr =>myparameters.lr, :epoch =>myparameters.epochs))
savefig(pl,"./Figures/ODELossCont_epochs="*string(myparameters.epochs)*"_numtraj="*join(string.([myparameters.numtraj,myparameters.numtrajplot]), '_')*"_"*string(slurmidx)*".png")
for (i,plt) in enumerate(list_plots)
savefig(plt,"./Figures/ODEControlCont"*string(i)*"_epochs="*string(myparameters.epochs)*"_numtraj="*join(string.([myparameters.numtraj,myparameters.numtrajplot]), '_')*"_"*string(slurmidx)*".png")
end
exit()