-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathFAB_l1.py
235 lines (176 loc) · 8.29 KB
/
FAB_l1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import tensorflow as tf
import numpy as np
import time
import torch
torch.set_default_tensor_type('torch.cuda.FloatTensor')
def get_diff_logits_grads_batch(model, g, im, la, sess, hps):
y2, g2 = sess.run([model.y, g], {model.x_input: im, model.y_input: la, model.bs: im.shape[0]})
g2 = np.moveaxis(np.array(g2),0,1)
la = np.squeeze(la)
df = y2 - np.expand_dims(y2[np.arange(im.shape[0]),la],1)
dg = g2 - np.expand_dims(g2[np.arange(im.shape[0]),la],1)
df[np.arange(im.shape[0]), la] = 1e10
return df, dg
def projection_l1_hyperplane(t2, w2, b2):
''' performs the operation described in Equation (4) wrt the l_1 norm '''
t = t2.clone().float()
w = w2.clone().float()
b = b2.clone().float()
c = (w*t).sum(1) - b
ind2 = (c < 0).nonzero()
w[ind2] *= -1
c[ind2] *= -1
r = torch.max(1/w, -1/w)
r = torch.min(r, 1e20*torch.ones(r.shape))
rs, indr = torch.sort(r, dim=1)
_, indr_rev = torch.sort(indr)
u = torch.arange(0, w.shape[0]).unsqueeze(1).cuda()
u2 = torch.arange(0, w.shape[1]).repeat(w.shape[0],1).cuda()
c6 = (w < 0).float()
d = (-t + c6)*(w != 0).float().cuda()
d2 = torch.min(-w*t, w*(1 - t))
ds = d2[u, indr]
ds2 = torch.cat((c.unsqueeze(-1), ds), 1)
s = torch.cumsum(ds2, dim=1)
c4 = s[:,-1] < 0
c2 = c4.nonzero().squeeze(-1)
counter = 0
lb = torch.zeros(c2.shape[0])
ub = torch.ones(c2.shape[0])*(s.shape[1])
nitermax = torch.ceil(torch.log2(torch.tensor(s.shape[1]).float()))
counter2 = torch.zeros(lb.shape).type(torch.cuda.LongTensor)
while counter < nitermax:
counter4 = torch.floor((lb + ub)/2)
counter2 = counter4.type(torch.cuda.LongTensor)
c3 = s[c2, counter2] > 0
ind3 = c3.nonzero().squeeze()
ind32 = (~c3).nonzero().squeeze()
lb[ind3] = counter4[ind3]
ub[ind32] = counter4[ind32]
counter += 1
lb2 = lb.cpu().numpy().astype(int)
if c2.nelement() != 0:
alpha = -s[c2, lb2]/w[c2, indr[c2, lb2]]
c5 = u2[c2].float() < lb.unsqueeze(-1).float()
u3 = c5[u[:c5.shape[0]], indr_rev[c2]]
d[c2] = d[c2]*u3.float()
d[c2, indr[c2, lb2]] = alpha
return d
def linear_approximation_search(model, clean_im_2, clean_im_l_2, adv_2, niter, sess):
a1 = np.copy(clean_im_2)
a2 = np.copy(adv_2)
u = np.arange(clean_im_2.shape[0])
y1 = sess.run(model.y, {model.x_input: a1, model.y_input: clean_im_l_2, model.bs: clean_im_2.shape[0]})
y2, la2 = sess.run([model.y, model.predictions], {model.x_input: a2, model.y_input: clean_im_l_2, model.bs: clean_im_2.shape[0]})
for counter in range(niter):
t1 = (y1[u, clean_im_l_2] - y1[u, la2]).reshape([-1, 1, 1, 1])
t2 = (-(y2[u, clean_im_l_2] - y2[u, la2])).reshape([-1, 1, 1, 1])
t3 = t1/(t1 + t2 + 1e-12)
c3 = np.logical_and(0.0 <= t3, t3 <= 1.0)
t3[np.logical_not(c3)] = 1.0
a3 = a1*(1.0 - t3) + a2*t3
a3 = np.clip(a3, 0.0, 1.0)
y3, la3, pred = sess.run([model.y, model.predictions, model.corr_pred], {model.x_input: a3, model.y_input: clean_im_l_2, model.bs: clean_im_2.shape[0]})
y1[pred] = y3[pred]
a1[pred] = a3[pred]
y2[np.logical_not(pred)] = y3[np.logical_not(pred)]
la2[np.logical_not(pred)] = la3[np.logical_not(pred)]
a2[np.logical_not(pred)] = a3[np.logical_not(pred)]
res = np.sum(np.abs(a2 - clean_im_2), axis=(1, 2, 3))
return res, a2
def FABattack_l1(model, clean_im, clean_im_l, sess, hps):
''' performs FAB attack on correctly classified points wrt the l_1-norm
imput
model a TensorFlow model, with
model.x_input: placeholder for the input images
model.y_input: placeholder for the labels
model.bs: placeholder for the batch size
model.predictions: the class predictes
model.corr_pred: returns (predicted class == true class)
model.y: logits
clean_im the original images
clean_im_l the original labels
hps parameters of the attack
hps.n_iter: iterations
hps.n_restarts: restarts
hps.eps: epsilon for the sampling when using restarts
hps.alpha_max: alpha_max
hps.n_labels: number of classes
hps.targetcl: if -1 untargeted attack
if c with c in [2..n_labels] the attack considers only the decision boundary between the orginal class
and the c-th most likely according to the classification of the original point
hps.final_search: if True a final search is performed
output
res_c the norm of adversarial perturbations found (1e10 in case no adversarial example is found)
adv_c adversarial examples for the correctly classified images in clean_im
'''
### creates tensors for the gradient of each logit wrt the input
grads = [None]*hps.n_labels
for cl in range(hps.n_labels):
grads[cl] = tf.gradients(model.y[:,cl], model.x_input)[0]
### the attack is performed only on the correctly classified points
pred = sess.run(model.corr_pred, {model.x_input: clean_im, model.y_input: clean_im_l, model.bs: clean_im.shape[0]})
pred1 = np.copy(pred)
im2 = np.copy(clean_im[pred])
la2 = np.copy(np.squeeze(clean_im_l[pred]))
bs = np.sum(pred.astype(int))
u1 = np.arange(bs)
adv = np.copy(im2)
adv_c = np.copy(clean_im)
res2 = 1e10*np.ones([bs])
res_c = np.zeros([clean_im_l.shape[0]])
x1 = np.copy(im2)
x0 = torch.from_numpy(np.reshape(np.copy(im2),[bs, -1])).cuda()
if hps.targetcl > -1: targetla = np.argsort(y[pred1], axis=1)[:,-hps.targetcl]
counter3 = 0
while counter3 < hps.n_restarts:
if counter3 > 0:
### random restarts ###
t = np.random.randn(x1.shape[0], x1.shape[1], x1.shape[2], x1.shape[3])
x1 = im2 + t/(1e-8 + np.sum(np.abs(t), axis=(1,2,3), keepdims=True))*np.minimum(hps.eps, res2.reshape([-1,1,1,1]))*0.5
x1 = np.clip(x1, 0.0, 1.0)
counter2 = 0
while counter2 < hps.n_iter:
### computation of the decision hyperplane ###
df, dg = get_diff_logits_grads_batch(model, grads, x1, la2, sess, hps)
if hps.targetcl == -1:
dist1 = np.abs(df)/(1e-8 + np.sum(np.abs(dg), axis=(2,3,4)))
ind = np.argmin(dist1, axis=1)
b = - df[u1, ind] + np.sum(np.reshape(dg[u1, ind]*x1, [bs, -1]), axis=1)
w = np.reshape(dg[u1, ind], [bs, -1])
else:
t1 = time.time()
b = - df[u1, targetla] + np.sum(np.reshape(dg[u1, targetla]*x1, [bs, -1]), axis=1)
w = np.reshape(dg[u1, targetla], [bs, -1])
timedist += -(t1 - time.time())
x2 = torch.from_numpy(np.reshape(x1,[bs, -1])).cuda()
w2, b2 = torch.from_numpy(w).cuda(), torch.from_numpy(b).cuda()
### projection step ###
d3 = projection_l1_hyperplane(torch.cat((x2,x0),0), torch.cat((w2, w2), 0), torch.cat((b2, b2),0)).cpu().numpy()
d1 = np.reshape(d3[:bs], x1.shape)
d2 = np.reshape(d3[-bs:], x1.shape)
a1 = np.sum(np.abs(d1), axis=(1,2,3), keepdims=True)
a2 = np.sum(np.abs(d2), axis=(1,2,3), keepdims=True)
a3 = 1.05 ### extrapolation parameter
alpha = np.minimum(a1/np.maximum(a1 + a2, 1e-20), hps.alpha_max)
x1 = np.clip((x1 + d1*a3)*(1 - alpha) + (im2 + d2*a3)*alpha, 0.0, 1.0)
pred = sess.run(model.corr_pred, {model.x_input: x1, model.y_input: la2, model.bs: bs})
ind2 = np.where(pred == False)
if pred[ind2].shape[0] > 0:
t = np.sum(np.abs(x1[ind2] - im2[ind2]), axis=(1, 2, 3))
adv[ind2] = x1[ind2] * (t < res2[ind2]).astype(int).reshape([-1,1,1,1]) + adv[ind2]*(t >= res2[ind2]).astype(int).reshape([-1,1,1,1])
res2[ind2] = t * (t < res2[ind2]).astype(int) + res2[ind2]*(t >= res2[ind2]).astype(int)
### backward step ###
x1[ind2] = im2[ind2] + (x1[ind2] - im2[ind2])*0.9
counter2 += 1
counter3 += 1
fl_success = (res2 < 1e10).astype(int)
### final search ###
if hps.final_search:
ind3 = res2 < 1e10
res2t, advt = linear_approximation_search(model, im2, la2, adv, 3, sess)
res2 = np.copy(res2t)
adv = np.copy(advt)
adv_c[pred1] = adv
res_c[pred1] = res2*fl_success + 1e10*(1 - fl_success)
return res_c, adv_c