-
Notifications
You must be signed in to change notification settings - Fork 0
/
self_play.py
241 lines (168 loc) · 4.8 KB
/
self_play.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.autograd as autograd
from readchar import readchar
from reward import RewardHistory
import pickle
import cv2
import time
'''
Moves
0 - NOP
1 - JUMP
2 - UP
3 - RIGHT
4 - LEFT
5 - DOWN
6 UPRIGHT
7 UPLEFT
8 DOWNRIGHT
9 DOWNLEFT
10 UPJUMP
11 RIGHTJUMP
12 LEFTJUMP
13 DOWNJUMP
14 UPRIGHTJUMP
15 UPLEFTJUMP
16 DOWNRIGHTJUMP
17 DOWNLEFTJUMP
'''
word_to_ix = {}
label_to_ix = {}
instructions = []
labels = []
with open('instructions.txt','r') as f:
f = f.readlines()
for line in f:
line = line.strip().split(',')
label = [line[1]]
sentence = list(map(lambda x : x.lower(),line[0].strip().split(' ')))
instructions.append((sentence,label))
#print (instructions)
for sent,label in instructions:
for word in sent:
if word not in word_to_ix:
word_to_ix[word] = len(word_to_ix)
for lab in label:
if lab not in label_to_ix:
label_to_ix[lab] = len(label_to_ix)
print(word_to_ix)
print(label_to_ix)
def prepare_sentence(sent, to_ix):
sent = sent.lower().strip().split(' ')
idxs = [to_ix[w] for w in sent]
return torch.tensor(idxs, dtype=torch.long)
class LSTMClassifier(nn.Module):
def __init__(self):
super(LSTMClassifier, self).__init__()
self.embeddings = nn.Embedding(VOCAB_SIZE, EMBEDDING_DIM)
self.lstm = nn.LSTM(EMBEDDING_DIM, HIDDEN_DIM_LSTM)
self.fullyconnected = nn.Linear(HIDDEN_DIM_LSTM, 10)
self.hidden = self.init_hidden()
def init_hidden(self):
# the first is the hidden h
# the second is the cell c
return (autograd.Variable(torch.zeros(1, 1, HIDDEN_DIM_LSTM)),
autograd.Variable(torch.zeros(1, 1, HIDDEN_DIM_LSTM)))
def forward(self, sentence):
embeds = self.embeddings(sentence)
x = embeds.view(len(sentence), 1, -1)
lstm_out, self.hidden = self.lstm(x, self.hidden)
#print (lstm_out)
y = self.fullyconnected(lstm_out[-1])
# log_probs = F.log_softmax(y)
#print (y)
return y
class ConvNetClassifier(nn.Module):
def __init__(self):
super(ConvNetClassifier, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(6, 32, kernel_size = 5, stride = 1, padding = 2),
nn.ReLU(),
nn.MaxPool2d(kernel_size = 2, stride = 2)
)
self.layer2 = nn.Sequential(
nn.Conv2d(32, 32, kernel_size = 5, stride = 1, padding = 2),
nn.ReLU(),
nn.MaxPool2d(kernel_size = 2, stride = 2)
)
self.layer3 = nn.Sequential(
nn.Conv2d(32, 64, kernel_size = 4, stride = 1, padding = 2),
nn.ReLU(),
nn.MaxPool2d(kernel_size = 2, stride = 2)
)
self.layer4 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size = 3, stride = 1, padding = 1)
)
self.layer5 = nn.Linear(26*20*64 , 10)
self.layer6 = nn.PReLU()
self.layer7 = nn.Linear(10, 10)
def forward(self, x):
x = np.swapaxes(x,0,2)
x = np.swapaxes(x,1,2)
x = autograd.Variable(torch.from_numpy(x).unsqueeze(0).float())
out = self.layer1(x)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = out.view(out.size(0), -1)
out = self.layer5(out)
out = self.layer6(out)
out = self.layer7(out)
#print (out)
return out
EMBEDDING_DIM = 20
HIDDEN_DIM_LSTM = 10
VOCAB_SIZE = len(word_to_ix)
LABEL_SIZE = len(label_to_ix)
text_model = LSTMClassifier()
image_model = ConvNetClassifier()
loss_function = nn.MSELoss()
optimizer1 = optim.SGD(text_model.parameters(), lr = 0.001)
optimizer2 = optim.SGD(image_model.parameters(), lr = 0.001)
def char_to_action():
x = readchar()
list_of_char = ['f','g','h','t',' ','r','y','q']
list_of_int = [4,5,3,2,1,12,11,-1]
for i in range(len(list_of_char)):
if list_of_char[i] == x:
return list_of_int[i]
return 0
def main():
env = gym.make('MontezumaRevenge-v0')
rewards = RewardHistory()
prev_state = env.reset()
prev_info = {'ale.lives':6}
env = gym.make('MontezumaRevenge-v0')
text_model = torch.load('models/sentence/text_model_20')
image_model = torch.load('models/image/image_model_20')
with open('dataset/dataset_true.pickle','rb') as f:
dataset = pickle.load(f)
with open('first_room.txt','r') as f:
instructions = f.readlines()
instructions = [i.strip() for i in instructions]
print (instructions)
state = env.reset()
info = {'ale.lives':6}
for t in range(100):
action = char_to_action()
if action == -1:
env.close()
break
state_new, reward, done, info_new = env.step(action)
stack = np.dstack((state,state_new))
frame_embed = image_model(stack)
enc_sentence = prepare_sentence(instructions[0], word_to_ix)
text_embed = text_model(enc_sentence)
reward = torch.dot(text_embed[0], frame_embed[0]) / (torch.norm(text_embed) * torch.norm(frame_embed))
r = reward.item()
print (r)
env.render()
info = info_new
state = state_new
print('Episode %d\t Episode Reward: %f\t'%(episode))
env.close()