Skip to content

Latest commit

 

History

History
53 lines (40 loc) · 3.47 KB

CONTRIBUTING.md

File metadata and controls

53 lines (40 loc) · 3.47 KB

Contribution Guidelines

Educational Modules

The building blocks of this repository are modules. Each module covers one or more lessons that can be taught at undergraduate or graduate level ( at any higher educational institution ).

Modules should be:

  • mostly independent of other modules
  • cover a limited number of topics
  • the coverage of a topic should be substantial and thorough if it is not an introductory or an overview module

The components of a module are:

  • a set of PowerPoint slides ( with presenter notes )
  • a Jupyter notebook
  • a quiz
  • a homework assignment
  • instructor notes
  • additional documentation ( where applicable )

The minimum requirement for a module to be considered for inclusion in this repository is that it contains:

  • a set of PowerPoint slides ( with presenter notes )
    • 30 or more slides are recommended
    • there must be enough substance in the slide deck to cover at least a 50-minute lecture
  • a Jupyter notebook ( illustrating how material covered in the slides are applied to one or more data sets )
    • use public data sets that are available for download or accessible through a hyperlink
    • do not assume dependent packages are pre-installed in the user's Jupyter environment
    • import all modules needed to run the code cells successfully
    • keep the markdown cells as simple as possible
      NB! The Jupyter notebook my be omitted in special cases, such as in Foundational modules where no accompanying data sets exist. But, this should be the exception rather than the rule.
  • a short summary of the module with a set of learning outcomes ( in a text or a markdown file )
    • 300 or less words are recommended ( for the summary )
    • use active verbs when formulating outcomes
    • make sure the the outcomes are measurable
    • examples of learning outcomes are
      • understand sampling, probability theory, and probability distributions
      • implement descriptive and inferential statistics using Python
      • demonstrate ability to visualize data and extract insight

Read the specifications in the NAMING-CONVENTIONS.md file to learn home to name your modules to facilitate search.

General

OpenDS4All accepts any contributions made from the community at large, with the following guidelines...

If you have any questions or concerns - feel free to reach out to [email protected].