-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtext_generation.py
28 lines (20 loc) · 1.27 KB
/
text_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import argparse
from transformers import AutoModelForCausalLM, AutoTokenizer
def main(model_path, tokenizer_path, prompt, max_new_tokens=100):
model = AutoModelForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
# Tokenize the input message
inputs = tokenizer([prompt], return_tensors='pt', return_token_type_ids=False)
# Generate response
response = model.generate(**inputs, max_new_tokens=max_new_tokens)
# Decode and print the result
decoded_output = tokenizer.batch_decode(response, skip_special_tokens=True)[0]
print("\n", decoded_output)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Load an LLM model and generate text.")
parser.add_argument("--model_path", type=str, required=True, help="Path to the pretrained model.")
parser.add_argument("--tokenizer_path", type=str, required=True, help="Path to the tokenizer.")
parser.add_argument("--prompt", type=str, required=True, help="Input prompt for text generation.")
parser.add_argument("--max_new_tokens", type=int, default=100, help="Maximum number of new tokens to generate.")
args = parser.parse_args()
main(args.model_path, args.tokenizer_path, args.prompt, args.max_new_tokens)