-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
lib.rs
691 lines (645 loc) · 21.5 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
#![deny(missing_docs)]
//! Data structure to make handling of sequential code more convenient.
//!
//! It takes sequential codes and generates a text buffer that will be used to easily get a
//! corresponding character through an input.
//!
//! # Notes
//! - sequence: A sequential code corresponding to a character.
//! Eg. af1 = "ɑ̀"
//! - input: The user input (or a set of sequences).
//! Eg. ngaf7 nkwe2e2 ka7meru7n
//! - text buffer: The memory where our text data will be stored.
//! - node: A node in the text buffer.
//!
//! # Example
//!
//! ```
//! use afrim_memory::{Node, utils};
//!
//! // Builds a TextBuffer.
//! let text_buffer = Node::default();
//! text_buffer.insert(vec!['a', 'f'], "ɑ".to_owned());
//! text_buffer.insert(vec!['a', 'f', '1'], "ɑ̀".to_owned());
//!
//! // Bulk insertion of data in the TextBuffer.
//! let data = vec![vec!["af11", "ɑ̀ɑ̀"], vec!["?.", "ʔ"]];
//! let text_buffer = utils::build_map(data);
//!
//! // Traverses the tree.
//! let node = text_buffer.goto('a').and_then(|node| node.goto('f')).and_then(|node| node.goto('1')).and_then(|node| node.goto('1'));
//! assert_eq!(node.unwrap().take(), Some("ɑ̀ɑ̀".to_owned()));
//! ```
//!
//! # Example: in reading data through a file
//!
//! ```no_run
//! use afrim_memory::utils;
//!
//! // Import data from a string.
//! let data = "a1 à\ne2 é";
//! let data = utils::load_data(data);
//! let text_buffer = utils::build_map(data);
//! ```
//!
//! # Example: with the usage of a cursor
//!
//! ```
//! use afrim_memory::{Cursor, Node};
//! use std::rc::Rc;
//!
//! // Build a TextBuffer.
//! let text_buffer = Node::default();
//! text_buffer.insert(vec!['i', '-'], "ɨ".to_owned());
//! text_buffer.insert(vec!['i', '-', '3'], "ɨ̄".to_owned());
//!
//! // Builds the cursor.
//! let memory = Rc::new(text_buffer);
//! let mut cursor = Cursor::new(memory, 16);
//!
//! // Moves the cursor through the input.
//! let input = "i-3";
//! input.chars().for_each(|c| { cursor.hit(c); });
//! // Verify the current state.
//! assert_eq!(cursor.state(), (Some("ɨ̄".to_owned()), 3, '3'));
//!
//! // Undo the last insertion.
//! assert_eq!(cursor.undo(), Some("ɨ̄".to_owned()));
//! // Verify the current state.
//! assert_eq!(cursor.state(), (Some("ɨ".to_owned()), 2, '-'));
//! ```
//!
//! [`TextBuffer`]: https://en.wikipedia.org/wiki/Text_buffer
use std::collections::{HashMap, VecDeque};
use std::{cell::RefCell, fmt, rc::Rc};
pub mod utils;
/// A node in the text buffer.
///
/// ```text
/// 0 ----------------> The root node
/// / \
/// 'g' 's' -------------> Node: Rc<Node>
/// / \
/// "ɣ" = '+' 'h' -----------> Node: Rc<Node>
/// \
/// '+' = "ʃ" ---> Node that holds a value
/// ```
#[derive(Clone, Debug)]
pub struct Node {
children: RefCell<HashMap<char, Rc<Node>>>,
/// Depth of the node.
pub depth: usize,
/// Character holded by the node.
pub key: char,
value: RefCell<Option<String>>,
}
impl Default for Node {
/// Create a root node.
///
/// A root node always holds a null character as key and is recommanded to use
/// to initialize the text buffer. You should always use it to create a text buffer because the
/// internal code can change.
///
/// # Example
///
/// ```
/// use afrim_memory::Node;
///
/// // It's recommanded to use it, to initialize your text buffer.
/// let text_buffer = Node::default();
/// // Not recommanded.
/// let another_text_buffer = Node::new('\0', 0);
///
/// assert!(text_buffer.is_root());
/// assert!(another_text_buffer.is_root());
/// ```
fn default() -> Self {
Self::new('\0', 0)
}
}
impl Node {
/// Initializes a new node in the text buffer.
///
/// Can also be used to initialize the text buffer (not recommanded).
/// Uses [`Node::default`](crate::Node::default) instead.
///
/// # Example
///
/// ```
/// use afrim_memory::Node;
///
/// let text_buffer = Node::new('\0', 0);
///
/// // You cannot assign directly a value to a node.
/// // But, an alternative is as below.
/// let node = Node::new('u', 0);
/// node.insert(vec![], "ʉ̠̀".to_owned());
/// assert_eq!(node.take(), Some("ʉ̠̀".to_owned()));
/// ```
///
/// **Note**: Early, [`Node::new`](crate::Node::new) was the only way to initialize a text
/// buffer but it has been replaced by [`Node::default`](crate::Node::default)
/// which is now more adapted for this use case.
pub fn new(key: char, depth: usize) -> Self {
Self {
children: HashMap::new().into(),
depth,
key,
value: None.into(),
}
}
/// Inserts a sequence in the text buffer.
///
/// # Example
///
/// ```
/// use afrim_memory::Node;
///
/// let text_buffer = Node::default();
/// text_buffer.insert(vec!['.', 't'], "ṫ".to_owned());
///
/// let node = text_buffer.goto('.').and_then(|node| node.goto('t'));
/// assert_eq!(node.unwrap().take(), Some("ṫ".to_owned()));
/// ```
pub fn insert(&self, sequence: Vec<char>, value: String) {
if let Some(character) = sequence.first() {
self.children
.borrow_mut()
.entry(*character)
.or_insert_with(|| Rc::new(Self::new(*character, self.depth + 1)))
.insert(sequence.into_iter().skip(1).collect(), value);
} else {
*self.value.borrow_mut() = Some(value);
};
}
/// Moves from the current node to his child.
///
/// Useful to go through a sequence.
///
/// # Example
///
/// ```
/// use afrim_memory::Node;
///
/// let text_buffer = Node::default();
/// text_buffer.insert(vec!['o', '/'], "ø".to_owned());
/// text_buffer.insert(vec!['o', '*'], "ɔ".to_owned());
/// text_buffer.insert(vec!['o', '1'], "ò".to_owned());
/// text_buffer.insert(vec!['o', '*', '~'], "ɔ̃".to_owned());
///
/// // let sequence = ['o', '*', '~'];
/// let node = text_buffer.goto('o').unwrap();
/// assert_eq!(node.take(), None);
/// let node = node.goto('*').unwrap();
/// assert_eq!(node.take(), Some("ɔ".to_owned()));
/// let node = node.goto('~').unwrap();
/// assert_eq!(node.take(), Some("ɔ̃".to_owned()));
/// ```
pub fn goto(&self, character: char) -> Option<Rc<Self>> {
self.children.borrow().get(&character).map(Rc::clone)
}
/// Extracts the value of the node.
///
/// A node in the text buffer don't always holds a value.
/// Hence, his value is optional.
///
/// # Example
///
/// ```
/// use afrim_memory::Node;
///
/// let text_buffer = Node::default();
/// text_buffer.insert(vec!['1', 'c'], "c̀".to_string());
///
/// let node = text_buffer.goto('1').unwrap();
/// assert_eq!(node.take(), None);
/// let node = node.goto('c').unwrap();
/// assert_eq!(node.take(), Some("c̀".to_owned()));
/// ```
pub fn take(&self) -> Option<String> {
self.value.borrow().as_ref().map(ToOwned::to_owned)
}
/// Returns true is the node is at the initial depth.
///
/// Useful when dealing with the [`Cursor`].
/// Will permit to know the beginning and the end of a sequence.
///
/// # Example
///
/// ```
/// use afrim_memory::{Cursor, Node};
///
/// let text_buffer = Node::default();
/// text_buffer.insert(vec!['e', '2' ], "é".to_owned());
/// text_buffer.insert(vec!['i', '7' ], "ǐ".to_owned());
///
/// assert!(text_buffer.is_root());
/// let node = text_buffer.goto('e').unwrap();
/// assert!(!node.is_root());
///
/// ```
pub fn is_root(&self) -> bool {
self.depth == 0
}
}
/// The Cursor permits to keep a track of the different positions while moving in
/// the text buffer.
///
/// ```text
/// '\0' - 'k' - '\0' - 'w' - '\0' '\0' '\0' - '\'' - 'n' - 'i' - '7' |--> 0
/// | /| / |
/// | / | / |
/// 'e' / 'e' / |--> 1
/// | / | / |
/// '2' '2' |--> 2
/// |
/// | depth
/// v
/// ```
///
/// # Example
///
/// ```
/// use afrim_memory::{Cursor, Node};
/// use std::rc::Rc;
///
/// let text_buffer = Node::default();
/// text_buffer.insert(vec!['e', '2'], "é".to_owned());
/// text_buffer.insert(vec!['i', '7'], "ǐ".to_owned());
///
/// // We build our cursor.
/// let memory = Rc::new(text_buffer);
/// let mut cursor = Cursor::new(memory, 16);
/// let input = "nkwe2e2'ni7";
/// input.chars().for_each(|c| { cursor.hit(c); });
///
/// assert_eq!(
/// cursor.to_sequence(),
/// vec![
/// 'k', '\0', 'w', '\0', 'e', '2', '\0', 'e', '2', '\0',
/// '\'', '\0', 'n', '\0', 'i', '7'
/// ]
/// );
/// ```
///
/// Note the partitioning of this input. The cursor can browse through the memory based
/// on an input and save a track of his positions. It's useful when we want handle
/// backspace operations in an input method engine.
#[derive(Clone)]
pub struct Cursor {
buffer: VecDeque<Rc<Node>>,
root: Rc<Node>,
}
impl fmt::Debug for Cursor {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.to_sequence().fmt(f)
}
}
impl Cursor {
/// Initializes the cursor of a text buffer.
///
/// `capacity` is the number of hit that the cursor can track. The cursor follows the FIFO
/// rule. If the capacity is exceeded, the oldest hit will be discarded.
///
/// **Note**: Be careful when you set this capacity. We recommend to select a capacity equal or
/// greater than the maximun sequence length that you want handle.
///
/// # Example
///
/// ```
/// use afrim_memory::{Cursor, Node};
/// use std::rc::Rc;
///
/// let text_buffer = Node::default();
/// let memory = Rc::new(text_buffer);
///
/// // A cursor of our text buffer.
/// let cursor = Cursor::new(memory, 16);
/// ```
///
/// **Note**: It's recommended to initialize the text buffer with
/// [`Node::default`](crate::Node::default) to evict unexpected behaviors.
pub fn new(root: Rc<Node>, capacity: usize) -> Self {
Self {
buffer: VecDeque::with_capacity(capacity),
root,
}
}
/// Enters a character in the sequence and returns his corresponding out.
///
/// Permits to simulate the user typing in the input method engine.
/// For each character entered, the cursor will move through the text buffer in looking of the
/// corresponding sequence. If the sequence is got (end on a value), his value will be returned.
///
/// # Example
///
/// ```
/// use afrim_memory::{Cursor, Node};
/// use std::rc::Rc;
///
/// let text_buffer = Node::default();
/// text_buffer.insert(vec!['o', 'e'], "œ".to_owned());
/// let memory = Rc::new(text_buffer);
///
/// let mut cursor = Cursor::new(memory, 16);
/// // let input= "coeur";
/// assert_eq!(cursor.hit('c'), None);
/// assert_eq!(cursor.hit('o'), None);
/// assert_eq!(cursor.hit('e'), Some("œ".to_owned()));
/// assert_eq!(cursor.hit('u'), None);
/// assert_eq!(cursor.hit('r'), None);
///
/// assert_eq!(cursor.to_sequence(), vec!['\0', 'c', '\0', 'o', 'e', '\0', 'u', '\0', 'r']);
/// ```
///
/// **Note**:
/// - The `\0` at the index 0, marks the beginning of a new sequence and the end of a
/// old. It also represents the root node.
/// - A character don't necessary need to be in the text buffer. The cursor will create a
/// tempory node to represent it in his internal memory. All characters not present in the text
/// buffer will be at the same depth that the root node.
pub fn hit(&mut self, character: char) -> Option<String> {
let node = self
.buffer
.iter()
.last()
.and_then(|node| node.goto(character))
.or_else(|| {
// We end the current sequence
self.insert(Rc::new(Node::default()));
// and start a new one
self.root.goto(character)
})
.unwrap_or_else(|| Rc::new(Node::new(character, 0)));
let out = node.take();
self.insert(node);
out
}
fn insert(&mut self, node: Rc<Node>) {
if self.buffer.len() == self.buffer.capacity() {
self.buffer.pop_front();
}
self.buffer.push_back(node);
}
/// Removes the last node and returns his corresponding out.
/// Or simplily, undo the previous hit.
///
/// Useful to simulate a backspace operation.
///
/// # Example
///
/// ```
/// use afrim_memory::{Cursor, Node};
/// use std::rc::Rc;
///
/// let text_buffer = Node::default();
/// text_buffer.insert(vec!['o', 'e'], "œ".to_owned());
/// let memory = Rc::new(text_buffer);
///
/// let mut cursor = Cursor::new(memory, 16);
/// // let input = "coeur";
/// assert_eq!(cursor.hit('c'), None);
/// assert_eq!(cursor.hit('o'), None);
/// assert_eq!(cursor.hit('e'), Some("œ".to_owned()));
/// assert_eq!(cursor.hit('u'), None);
/// assert_eq!(cursor.hit('r'), None);
///
/// // Undo
/// assert_eq!(cursor.undo(), None);
/// assert_eq!(cursor.undo(), None);
/// assert_eq!(cursor.undo(), Some("œ".to_owned()));
/// assert_eq!(cursor.undo(), None);
/// assert_eq!(cursor.undo(), None);
///
/// assert_eq!(cursor.to_sequence(), vec!['\0']);
/// ```
///
/// **Note**: Look at the `\0` at the end. It represents the root node, and the start of a
/// new sequence. Even if you remove it until obtain an empty buffer, the cursor will add it
/// before each new sequence. You can considere it as a delimiter between two sequences. But if
/// you want clear or verify if the buffer is empty, you can use [Cursor::clear](crate::Cursor::clear) or [Cursor::is_empty](crate::Cursor::is_empty).
pub fn undo(&mut self) -> Option<String> {
let node = self.buffer.pop_back();
node.and_then(|node| {
if node.key == '\0' {
self.undo()
} else {
node.take()
}
})
}
/// Resumes at the current sequence.
///
/// By removing the end marker of the current sequence, this method allows the cursor
/// to continue using it as an ongoing sequence.
///
/// # Example
///
/// ```
/// use afrim_memory::{Cursor, Node};
/// use std::rc::Rc;
///
/// let text_buffer = Node::default();
/// text_buffer.insert(vec!['c', '_'], "ç".to_owned());
/// let memory = Rc::new(text_buffer);
///
/// let mut cursor = Cursor::new(memory, 8);
/// cursor.hit('c');
/// cursor.hit('c');
/// cursor.undo();
/// assert_eq!(cursor.to_sequence(), vec!['\0', 'c', '\0']);
///
/// // We want the next hit to reuse this sequence.
/// cursor.resume();
/// assert_eq!(cursor.to_sequence(), vec!['\0', 'c']);
/// assert_eq!(cursor.hit('_'), Some("ç".to_owned()).to_owned());
/// ```
pub fn resume(&mut self) {
if self
.buffer
.iter()
.last()
.map_or(false, |node| node.is_root())
{
self.buffer.pop_back();
}
}
/// Returns the current state of the cursor.
///
/// Permits to know the current position in the memory and also the last hit.
///
/// # Example
///
/// ```
/// use afrim_memory::{Cursor, Node};
/// use std::rc::Rc;
///
/// let text_buffer = Node::default();
/// text_buffer.insert(vec!['o', '/'], "ø".to_owned());
/// let memory = Rc::new(text_buffer);
///
/// let mut cursor = Cursor::new(memory, 8);
/// // The cursor starts always at the root node.
/// assert_eq!(cursor.state(), (None, 0, '\0'));
/// cursor.hit('o');
/// assert_eq!(cursor.state(), (None, 1, 'o'));
/// ```
pub fn state(&self) -> (Option<String>, usize, char) {
self.buffer
.iter()
.last()
.map(|n| (n.take(), n.depth, n.key))
.unwrap_or_default()
}
/// Returns the current sequence in the cursor.
///
/// It's always useful to know what is inside the memory of the cursor for debugging / logging.
/// The
///
/// # Example
///
/// ```
/// use afrim_memory::{Cursor, Node};
/// use std::rc::Rc;
///
/// let text_buffer = Node::default();
/// text_buffer.insert(vec!['.', '.', 'z'], "z̈".to_owned());
/// let memory = Rc::new(text_buffer);
///
/// let mut cursor = Cursor::new(memory, 8);
/// "z..z".chars().for_each(|c| { cursor.hit(c); });
///
/// assert_eq!(cursor.to_sequence(), vec!['\0', 'z', '\0', '.', '.', 'z']);
/// ```
pub fn to_sequence(&self) -> Vec<char> {
self.buffer.iter().map(|node| node.key).collect()
}
/// Clear the memory of the cursor.
///
/// In clearing the internal buffer, all the tracking information will be lost.
///
/// # Example
///
/// ```
/// use afrim_memory::{Cursor, Node};
/// use std::rc::Rc;
///
/// let text_buffer = Node::default();
/// let memory = Rc::new(text_buffer);
/// let mut cursor = Cursor::new(memory, 8);
///
/// "hello".chars().for_each(|c| { cursor.hit(c); });
/// assert!(!cursor.is_empty());
///
/// cursor.clear();
/// assert!(cursor.is_empty());
/// ```
pub fn clear(&mut self) {
self.buffer.clear();
}
/// Verify if the cursor is empty.
///
/// # Example
///
/// ```
/// use afrim_memory::{Cursor, Node};
/// use std::rc::Rc;
///
/// let text_buffer = Node::default();
/// let memory = Rc::new(text_buffer);
///
/// let mut cursor = Cursor::new(memory, 8);
/// assert!(cursor.is_empty());
///
/// cursor.hit('a');
/// assert!(!cursor.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
return self.buffer.iter().filter(|c| c.key != '\0').count() == 0;
}
}
#[cfg(test)]
mod tests {
#[test]
fn test_node() {
use crate::Node;
let root = Node::default();
assert!(root.is_root());
root.insert(vec!['a', 'f'], "ɑ".to_owned());
root.insert(vec!['a', 'f', '1'], "ɑ̀".to_owned());
assert!(root.goto('a').is_some());
assert!(!root.goto('a').unwrap().is_root());
assert!(root.goto('b').is_none());
let node = root.goto('a').and_then(|e| e.goto('f'));
assert_eq!(node.as_ref().unwrap().take(), Some("ɑ".to_owned()));
let node = node.and_then(|e| e.goto('1'));
assert_eq!(node.as_ref().unwrap().take(), Some("ɑ̀".to_owned()));
}
#[test]
fn test_cursor() {
use crate::{utils, Cursor};
use std::rc::Rc;
macro_rules! hit {
( $cursor:ident $( $c:expr ),* ) => (
$( $cursor.hit($c); )*
);
}
macro_rules! undo {
( $cursor:ident $occ:expr ) => {
(0..$occ).into_iter().for_each(|_| {
$cursor.undo();
});
};
}
let data = include_str!("../data/sample.txt");
let root = utils::build_map(utils::load_data(data));
let mut cursor = Cursor::new(Rc::new(root), 8);
assert_eq!(cursor.state(), (None, 0, '\0'));
hit!(cursor '2', 'i', 'a', 'f');
assert_eq!(cursor.to_sequence(), vec!['\0', '2', 'i', 'a', 'f']);
assert_eq!(cursor.state(), (Some("íɑ́".to_owned()), 4, 'f'));
undo!(cursor 1);
assert_eq!(cursor.to_sequence(), vec!['\0', '2', 'i', 'a']);
// Cursor::resume
hit!(cursor 'x');
assert_eq!(cursor.to_sequence(), vec!['\0', '2', 'i', 'a', '\0', 'x']);
undo!(cursor 1);
cursor.resume();
hit!(cursor 'f');
assert_eq!(cursor.to_sequence(), vec!['\0', '2', 'i', 'a', 'f']);
undo!(cursor 2);
cursor.hit('e');
assert_eq!(cursor.to_sequence(), vec!['\0', '2', 'i', 'e']);
undo!(cursor 2);
hit!(cursor 'o', 'o');
assert_eq!(cursor.to_sequence(), vec!['\0', '2', 'o', 'o']);
undo!(cursor 3);
assert_eq!(cursor.to_sequence(), vec!['\0']);
hit!(cursor '2', '2', 'u', 'a');
assert_eq!(
cursor.to_sequence(),
vec!['\0', '\0', '2', '\0', '2', 'u', 'a']
);
undo!(cursor 4);
assert_eq!(cursor.to_sequence(), vec!['\0', '\0']);
assert!(cursor.is_empty());
undo!(cursor 1);
assert_eq!(cursor.to_sequence(), vec![]);
hit!(
cursor
'a', 'a', '2', 'a', 'e', 'a', '2', 'f', 'a',
'2', '2', 'x', 'x', '2', 'i', 'a', '2', '2', '_', 'f',
'2', 'a', '2', 'a', '_'
);
assert_eq!(
cursor.to_sequence(),
vec!['f', '\0', '2', 'a', '\0', '2', 'a', '_']
);
assert_eq!(
format!("{:?}", cursor),
format!("{:?}", cursor.to_sequence())
);
cursor.clear();
assert_eq!(cursor.to_sequence(), vec![]);
}
}