-
Notifications
You must be signed in to change notification settings - Fork 8
/
data_collector.py
executable file
·865 lines (734 loc) · 39.5 KB
/
data_collector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
import threading
import subprocess
import os
import sys
import argparse
import pygame
import random
import numpy as np
import logging
import time
import carla
from carla import ColorConverter as cc
from carla import Transform
from matplotlib import cm
import open3d as o3d
# Note: add PythonAPI and PythonAPI/carla into python path
from examples.synchronous_mode import CarlaSyncMode
from examples.automatic_control import World, HUD, KeyboardControl, BehaviorAgent, BasicAgent, get_actor_display_name
from examples.automatic_control import CollisionSensor, LaneInvasionSensor, GnssSensor
from utils import vector3d_to_array, Timer
from bounding_box import create_kitti_datapoint
from dataexport import save_ref_files, save_image_data, save_kitti_data, save_lidar_data
from dataexport import save_groundplanes, save_calibration_matrices
from camera_utils import draw_2d_bounding_boxes, draw_3d_bounding_boxes
CLASSES_TO_LABEL = ["vehicle", "pedestrian"]
VIRIDIS = np.array(cm.get_cmap('plasma').colors)
VID_RANGE = np.linspace(0.0, 1.0, VIRIDIS.shape[0])
class CameraManager(object):
"""
A simplified camera manager class that spawns and keeps all required sensors for KITTI dataset
"""
def __init__(self, parent_actor, hud, args):
"""Constructor method"""
self.surface = None
self._parent = parent_actor
self.hud = hud
self.recording = False
self.index = 0
attachment = carla.AttachmentType
camera_rgb_attributes = {'image_size_x': str(args.width),
'image_size_y': str(args.height)}
camera_depth_attributes = {'image_size_x': str(args.width),
'image_size_y': str(args.height)}
lidar_ray_cast_attributes = {'channels': '64', # kitti paper: 64 repo: 40
'range': str(args.lidar_range), # kitti paper: 120
'points_per_second': '1300000', # kitti paper: ~1300000 repo: 720000
'rotation_frequency': '10', # repo/paper: 10
'upper_fov': '7.0', # repo: 7 paper vert fov: 26.9°
'lower_fov': '-16.0', # repo: -16 paper vert fov: 26.9°
'atmosphere_attenuation_rate': '0.004', # carla: 0.004
'noise_stddev': '0.0', # carla: 0.0
'dropoff_general_rate': '0.10', # carla: 0.45
'dropoff_zero_intensity': '0.4', # carla: 0.4
'dropoff_intensity_limit': '0.8'} # carla: 0.8
lidar_blickfeld_attributes = {'frame_mode': 'up',
'scanlines': '50',
'horizontal_fov_limit': '70',
'vertical_fov_limit': '30.0',
'mirror_frequency': '150.0', # TODO what's this?
'range': str(args.lidar_range)}
self.default_sensor_transform = carla.Transform(carla.Location(x=1.6, z=1.7))
self.default_sensor_attachment_type = attachment.Rigid
# It seems there is a an issue with lidar transform that we should perform a rotation by -90 degree
# for correct visualization and saving on file. This is solved in carla 0.9.10! Uncomment it for carla 0.9.9.
# self.default_lidar_transform = carla.Transform(self.default_sensor_transform.location, carla.Rotation(yaw=-90))
# Note that camera.rgb and camera.depth should have the same config for correct detection of occluded agents
self.sensors = {'sensor.camera.rgb': {'name': 'Camera RGB',
'attributes': camera_rgb_attributes,
'transform': self.default_sensor_transform},
'sensor.camera.depth': {'name': 'Camera Depth (Gray Scale)',
'attributes': camera_depth_attributes,
'transform': self.default_sensor_transform}
}
for lidar in args.lidars:
if lidar == 'ray_cast':
ray_cast_sensor_def = {'sensor.lidar.ray_cast': {'name': 'Ray-Cast',
'attributes': lidar_ray_cast_attributes,
'transform': self.default_sensor_transform}}
self.sensors.update(ray_cast_sensor_def)
elif lidar == 'blickfeld':
blickfeld_sensor_def = {'sensor.lidar.blickfeld': {'name': 'Blickfeld',
'attributes': lidar_blickfeld_attributes,
'transform': self.default_sensor_transform}}
self.sensors.update(blickfeld_sensor_def)
self.setup_sensors(args)
def get_intrinsic_matrix(self, camera):
width = int(camera.attributes['image_size_x'])
height = int(camera.attributes['image_size_y'])
fov = float(camera.attributes['fov'])
k = np.identity(3)
k[0, 2] = width / 2.0
k[1, 2] = height / 2.0
k[0, 0] = k[1, 1] = width / (2.0 * np.tan(fov * np.pi / 360.0))
return k
def toggle_camera(self):
"""Activate a camera"""
self.hud.notification('Only single camera transform is available!')
def setup_sensors(self, args):
# Spawns all sensors
world = self._parent.get_world()
bp_library = world.get_blueprint_library()
for sensor_key in self.sensors.keys():
blp = bp_library.find(sensor_key)
for key, val in self.sensors[sensor_key]['attributes'].items():
blp.set_attribute(key, val)
transform = self.sensors[sensor_key].get('transform', self.default_sensor_transform)
attach_type = self.sensors[sensor_key].get('attach_type', self.default_sensor_attachment_type)
sensor = self._parent.get_world().spawn_actor(blp,
transform,
attach_to=self._parent,
attachment_type=attach_type)
self.sensors[sensor_key].update({'sensor': sensor})
# Setup intrinsic matrix for camera rgb sensor
if sensor_key == 'sensor.camera.rgb':
camera_rgb_intrinsic = self.get_intrinsic_matrix(sensor)
self.sensors[sensor_key].update({'calibration': camera_rgb_intrinsic})
# Setup relative to camera matrix for lidar sensors
elif 'lidar' in sensor_key:
veh_cam_mat = self.sensors['sensor.camera.rgb']['transform'].get_inverse_matrix()
lidar_veh_mat = self.sensors[sensor_key]['transform'].get_matrix()
lidar_cam_mat = np.dot(veh_cam_mat, lidar_veh_mat)
self.sensors[sensor_key].update({'lidar_cam_mat': lidar_cam_mat})
if args.vis_lidar:
# Setup open3d visualization for lidars
if 'lidar' in sensor_key:
sensor_name = self.sensors[sensor_key]['name']
o3d_vis = o3d.visualization.Visualizer()
o3d_vis.create_window(
window_name=f'Carla {sensor_name} Lidar', width=960, height=540, left=480, top=270)
o3d_vis.get_render_option().background_color = [0.05, 0.05, 0.05]
o3d_vis.get_render_option().point_size = 1
o3d_vis.get_render_option().show_coordinate_frame = True
point_list = o3d.geometry.PointCloud()
self.sensors[sensor_key].update({'o3d_vis': o3d_vis, 'point_list': point_list, 'lidar_vis_frame': 0})
def set_sensor(self, index, notify=True):
"""Set a sensor"""
index = index % len(self.sensors.keys())
if notify:
key = self.sensors.keys()[index]
self.hud.notification(self.sensors[key]['name'])
self.index = index
def next_sensor(self):
"""Get the next sensor"""
self.set_sensor(self.index + 1)
def toggle_recording(self):
"""Toggle recording on or off"""
self.recording = not self.recording
self.hud.notification('Recording %s' % ('On' if self.recording else 'Off'))
def render(self, display):
"""Render method"""
if self.surface is not None:
display.blit(self.surface, (0, 0))
class World(World):
"""
A simplified version of Carla World class where all necessary sensors are spawned initially and
their transformations are fix (i.e., no camera toggling is available). The camera manager is thus simplified and
is being rendered independently outside of this class.
"""
def restart(self, args):
"""Restart the world"""
# Keep same camera config if the camera manager exists.
cam_index = self.camera_manager.index if self.camera_manager is not None else 0
cam_pos_id = self.camera_manager.transform_index if self.camera_manager is not None else 0
# Set the seed if requested by user
if args.seed is not None:
random.seed(args.seed)
# Get a random blueprint.
blueprint = random.choice(self.world.get_blueprint_library().filter(self._actor_filter))
blueprint.set_attribute('role_name', 'hero')
if blueprint.has_attribute('color'):
color = random.choice(blueprint.get_attribute('color').recommended_values)
blueprint.set_attribute('color', color)
# Spawn the player.
logging.debug("Spawning the player")
if self.player is not None:
spawn_point = self.player.get_transform()
spawn_point.location.z += 2.0
spawn_point.rotation.roll = 0.0
spawn_point.rotation.pitch = 0.0
self.destroy()
self.player = self.world.try_spawn_actor(blueprint, spawn_point)
while self.player is None:
if not self.map.get_spawn_points():
print('There are no spawn points available in your map/town.')
print('Please add some Vehicle Spawn Point to your UE4 scene.')
sys.exit(1)
spawn_points = self.map.get_spawn_points()
spawn_point = random.choice(spawn_points) if spawn_points else carla.Transform()
self.player = self.world.try_spawn_actor(blueprint, spawn_point)
if args.autopilot:
self.player.set_autopilot()
# Set up the sensors.
self.collision_sensor = CollisionSensor(self.player, self.hud)
self.lane_invasion_sensor = LaneInvasionSensor(self.player, self.hud)
self.gnss_sensor = GnssSensor(self.player)
self.camera_manager = CameraManager(self.player, self.hud, args)
self.camera_manager.transform_index = cam_pos_id
self.camera_manager.set_sensor(cam_index, notify=False)
actor_type = get_actor_display_name(self.player)
self.hud.notification(actor_type)
def render(self, display):
"""Destroy sensors"""
self.hud.render(display)
def destroy_sensors(self):
"""Destroys all actors"""
self.camera_manager.index = None
for key, val in self.camera_manager.sensors.items():
val['sensor'].destroy()
val['sensor'] = None
def destroy(self):
print("Destroying actors...")
actors = [val['sensor'] for val in self.camera_manager.sensors.values()]
actors.extend([self.collision_sensor, self.lane_invasion_sensor, self.gnss_sensor, self.player])
for actor in actors:
if actor is not None and hasattr(actor, 'destroy'):
actor.destroy()
class CarlaGame(object):
def __init__(self, args):
pygame.init()
pygame.font.init()
logging.debug('pygame started')
self.tot_target_reached = 0
self.num_min_waypoints = 21
self._timer = Timer()
self.reset_episode = True
self.clock = pygame.time.Clock()
self.world = None
# To keep track of how far the car has driven since the last capture of data
self._agent_location_on_last_capture = None
self._frames_since_last_capture = 0
# How many frames we have captured since reset
self._captured_frames_since_restart = 0
if args.save_data:
self.captured_frame_no = self.current_captured_frame_num(args)
self.display = pygame.display.set_mode(
(args.width, args.height),
pygame.HWSURFACE | pygame.DOUBLEBUF)
client = carla.Client(args.host, args.port)
client.set_timeout(4.0)
client.reload_world()
self.hud = HUD(args.width, args.height)
self.world = World(client.get_world(), self.hud, args)
self.controller = KeyboardControl(self.world)
if (args.autopilot == False):
self.agent = BehaviorAgent(self.world.player)
self.spawn_points = self.world.map.get_spawn_points()
random.shuffle(self.spawn_points)
if self.spawn_points[0].location != self.agent.vehicle.get_location():
destination = self.spawn_points[0].location
else:
destination = self.spawn_points[1].location
self.agent.set_destination(self.agent.vehicle.get_location(), destination, clean=True)
def current_captured_frame_num(self, args):
# Figures out which frame number we currently are on
# This is run once, when we start the simulator in case we already have a dataset.
# The user can then choose to overwrite or append to the dataset.
label_path = os.path.join(args.phase_dir, 'label_2/')
logging.debug('Path to label directory: {}'.format(label_path))
num_existing_data_files = len(
[name for name in os.listdir(label_path) if name.endswith('.txt')])
logging.info("Number of existing data files: {}".format(num_existing_data_files))
if num_existing_data_files == 0:
return 0
answer = input(
"There already exists a dataset in {}. Would you like to (O)verwrite or (A)ppend the dataset? (O/A)".format(args.phase_dir))
if answer.upper() == "O":
logging.info(
"Resetting frame number to 0 and overwriting existing")
# Overwrite the data
return 0
logging.info("Continuing recording data on frame number {}".format(
num_existing_data_files))
return num_existing_data_files
def _on_new_episode(self, args):
logging.info('Starting a new episode...')
self._timer = Timer()
self.reset_episode = False
self._is_on_reverse = False
# Reset all tracking variables
self._agent_location_on_last_capture = None
self._frames_since_last_capture = 0
self._captured_frames_since_restart = 0
if (args.autopilot == False):
self.agent.reroute(self.spawn_points)
def _distance_since_last_recording(self):
if self._agent_location_on_last_capture is None:
return None
cur_pos = vector3d_to_array(self.world.player.get_transform().location)
last_pos = vector3d_to_array(self._agent_location_on_last_capture)
def dist_func(x, y): return sum((x - y) ** 2)
return dist_func(cur_pos, last_pos)
def _save_datapoints(self, datapoints, cam_calibration, rgb_image, point_clouds, lidar_heights, lidar_cam_mats, args):
# Determine whether to save files
distance_driven = self._distance_since_last_recording()
logging.debug("Distance driven since last recording: {}".format(distance_driven))
has_driven_long_enough = distance_driven is None or distance_driven > args.distance_since_last_recording
if (self._timer.step + 1) % args.steps_between_recordings == 0:
if has_driven_long_enough and datapoints:
self._update_agent_location()
# Save screen, lidar and kitti training labels together with calibration and groundplane files
self._save_training_files(datapoints, cam_calibration, point_clouds, rgb_image, lidar_heights, lidar_cam_mats, args)
self.captured_frame_no += 1
self._captured_frames_since_restart += 1
self._frames_since_last_capture = 0
else:
logging.debug(
"Could save datapoint, but agent has not driven {} meters" +
" since last recording (Currently {} meters)".format(
args.distance_since_last_recording, distance_driven))
else:
self._frames_since_last_capture += 1
logging.debug(
"Could not save training data - no visible agents of selected classes in scene")
def _render(self, display, sensor_data_dict, args):
image = np.copy(sensor_data_dict['sensor.camera.rgb']['image'])
image_depth = sensor_data_dict['sensor.camera.depth']['image'] # Gray-scale depth image for visualization
depth_map = sensor_data_dict['sensor.camera.depth']['depth']
# Retrieve and draw datapoints on rgb image
datapoint_gen_time = time.time()
image, datapoints, bounding_boxes, boxes_2d = self._generate_datapoints(image, depth_map, args)
#logging.info("datapoint generation time: ", (time.time() - datapoint_gen_time) * 1000.)
# Display RGB Image
surface = pygame.surfarray.make_surface(image.swapaxes(0, 1))
display.blit(surface, (0, 0))
# TODO Display lidar point cloud on rgb image
if args.vis_lidar:
for key in sensor_data_dict.keys():
if 'lidar' in key:
lidar_points = sensor_data_dict[key]['points']
lidar_intensity = lidar_points[:, -1]
lidar_point_list = self.world.camera_manager.sensors[key]['point_list'] # assume pass by ref
lidar_vis_frame = self.world.camera_manager.sensors[key]['lidar_vis_frame']
o3d_vis = self.world.camera_manager.sensors[key]['o3d_vis']
intensity_col = 1.0 - np.log(lidar_intensity) / np.log(np.exp(-0.004 * 100))
int_color = np.c_[
np.interp(intensity_col, VID_RANGE, VIRIDIS[:, 0]),
np.interp(intensity_col, VID_RANGE, VIRIDIS[:, 1]),
np.interp(intensity_col, VID_RANGE, VIRIDIS[:, 2])]
# We're negating the y to correclty visualize a world that matches
# what we see in Unreal since Open3D uses a right-handed coordinate system
lidar_raycast_points_o3d = np.copy(lidar_points)
lidar_raycast_points_o3d[:, 1] = -lidar_raycast_points_o3d[:, 1]
lidar_point_list.points = o3d.utility.Vector3dVector(lidar_raycast_points_o3d[:, :3])
lidar_point_list.colors = o3d.utility.Vector3dVector(int_color)
if lidar_vis_frame == 2:
o3d_vis.add_geometry(lidar_point_list)
mesh_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(
size=2, origin=[0, 0, 0])
o3d_vis.add_geometry(mesh_frame)
o3d_vis.update_geometry(lidar_point_list)
o3d_vis.poll_events()
o3d_vis.update_renderer()
# # This can fix Open3D jittering issues:
# time.sleep(0.005)
lidar_vis_frame += 1
self.world.camera_manager.sensors[key]['lidar_vis_frame'] = lidar_vis_frame
# Display 3D Bounding Boxes
if args.vis_boxes3d:
draw_3d_bounding_boxes(display, bounding_boxes)
# Display 2D Bounding Boxes
elif args.vis_boxes2d:
draw_2d_bounding_boxes(display, boxes_2d)
if args.vis_ry:
myfont = pygame.font.SysFont('Comic Sans MS', 30)
for datapoint in datapoints:
ry = np.degrees(datapoint.rotation_y)
textsurface = myfont.render('ry: {:.2f}'.format(np.round(ry)), False, (0, 0, 0))
bbox_top_right = (datapoint.bbox[2], datapoint.bbox[1])
display.blit(textsurface, bbox_top_right)
if args.vis_alpha:
myfont = pygame.font.SysFont('Comic Sans MS', 30)
for datapoint in datapoints:
alpha = np.degrees(datapoint.alpha)
textsurface = myfont.render('alpha: {:.2f}'.format(np.round(alpha)), False, (0, 0, 0))
bbox_top_right = (datapoint.bbox[2], datapoint.bbox[1])
display.blit(textsurface, bbox_top_right)
return datapoints
def _save_training_files(self, datapoints, cam_calibration, point_clouds, rgb_image, lidar_heights, lidar_cam_mats, args):
logging.info("Attempting to save at timer step {}, frame no: {}".format(
self._timer.step, self.captured_frame_no))
for g_path, l_path, c_path, point_cloud, l_height, lidar_cam_mat in zip(args.groundplane_paths,
args.lidar_paths,
args.calibration_paths,
point_clouds,
lidar_heights,
lidar_cam_mats):
groundplane_fname = g_path.format(self.captured_frame_no)
lidar_fname = l_path.format(self.captured_frame_no)
calib_filename = c_path.format(self.captured_frame_no)
save_groundplanes(groundplane_fname, self.world.player.get_transform(), l_height)
save_lidar_data(lidar_fname, point_cloud)
save_calibration_matrices(calib_filename, cam_calibration, lidar_cam_mat)
kitti_fname = args.label_path.format(self.captured_frame_no)
img_fname = args.image_path.format(self.captured_frame_no)
save_ref_files(args.phase_dir, self.captured_frame_no)
save_image_data(img_fname, rgb_image)
save_kitti_data(kitti_fname, datapoints)
def _update_agent_location(self):
self._agent_location_on_last_capture = self.world.player.get_transform().location
def _generate_datapoints(self, image, depth_map, args):
"""
Returns a list of datapoints (labels and such) that are generated this frame
together with the main image image
"""
datapoints = []
bounding_boxes = []
boxes_2d = []
image = image.copy()
agents_list = []
if 'pedestrian' in CLASSES_TO_LABEL:
pedestrians_list = self.world.world.get_actors().filter('walker.pedestrian.*')
agents_list.extend(pedestrians_list)
if ('car' in CLASSES_TO_LABEL) or ('vehicle' in CLASSES_TO_LABEL):
vehicles_list = self.world.world.get_actors().filter('vehicle.*')
agents_list.extend(vehicles_list)
# Stores all datapoints for the current frames
for agent in agents_list:
image, kitti_datapoint, bounding_box = create_kitti_datapoint(agent=agent,
camera=self.world.camera_manager.sensors['sensor.camera.rgb']['sensor'],
cam_calibration=self.world.camera_manager.sensors['sensor.camera.rgb']['calibration'],
image=image,
depth_map=depth_map,
player_transform=self.world.player.get_transform(),
max_render_depth=args.lidar_range)
if kitti_datapoint:
datapoints.append(kitti_datapoint)
bounding_boxes.append(bounding_box)
boxes_2d.append(kitti_datapoint.bbox)
return image, datapoints, bounding_boxes, boxes_2d
def _preprocess_sensor_data(self, sensor_data):
processed_data = dict()
for sensor_key, sensor_data in sensor_data.items():
# Assume a same preprocessing step for both blickfeld and raycasting lidars
if 'sensor.lidar' in sensor_key:
lidar_range = float(self.world.camera_manager.sensors[sensor_key]['sensor'].attributes['range'])
points = np.frombuffer(sensor_data.raw_data, dtype=np.dtype('f4'))
points = np.reshape(points, (int(points.shape[0] / 4), 4))
points = np.copy(points)
# TODO blickfeld should be checked against 0.9.10 carla version
if 'blickfeld' in sensor_key:
# Swapping x and y axis in blickfeld lidar for correct visualization
# points[:, [0, 1]] = points[:, [1, 0]]
# To make coordinate system consistent with default ray_cast lidar we turn right-hand coordinate sys
# to left-hand for blickfeld
# points[:, 0] = -points[:, 0]
# Looks like that the blickfeld produces values for x-axis beyond lidar range.
# We thus cut the points based on the lidar range.
points[points[:, 1] > lidar_range] = lidar_range - 0.01
lidar_data = np.array(points[:, :2])
lidar_data *= min(self.hud.dim) / (2.0 * lidar_range)
lidar_data += (0.5 * self.hud.dim[0], 0.5 * self.hud.dim[1])
lidar_data = np.fabs(lidar_data) # pylint: disable=assignment-from-no-return
lidar_data = lidar_data.astype(np.int32)
lidar_data = np.reshape(lidar_data, (-1, 2))
lidar_img_size = (self.hud.dim[0], self.hud.dim[1], 3)
lidar_img = np.zeros(lidar_img_size)
lidar_img[tuple(lidar_data.T)] = (255, 255, 255)
processed_data.update({sensor_key: {'image': lidar_img, 'points': points}})
else:
color_converter = cc.Depth if 'depth' in sensor_key else cc.Raw
sensor_data.convert(color_converter)
array = np.frombuffer(sensor_data.raw_data, dtype=np.dtype("uint8"))
array = np.reshape(array, (sensor_data.height, sensor_data.width, 4))
array = array[:, :, :3]
if 'depth' in sensor_key:
# Decoding depth: https://carla.readthedocs.io/en/stable/cameras_and_sensors/#camera-depth-map
array = array.astype(np.float32)
normalized_depth = np.dot(array, [65536.0, 256.0, 1.0])
normalized_depth /= 16777215.0 # (256.0 * 256.0 * 256.0 - 1.0)
depth = normalized_depth * 1000
processed_data.update({sensor_key: {'image': array, 'depth': depth}})
else:
array = array[:, :, ::-1]
processed_data.update({sensor_key: {'image': array}})
return processed_data
def game_loop(self, args):
""" Main loop for agent"""
sensors = [val['sensor'] for val in self.world.camera_manager.sensors.values()]
# Create a synchronous mode context.
with CarlaSyncMode(self.world.world, *sensors, fps=args.fps) as sync_mode:
while True:
if self.controller.parse_events():
return
self._timer.tick()
self.clock.tick()
# Advance the simulation and wait for the data.
# Assume that the sensor data have the same order as in self.world.camera_manager.sensors
simulation_data = sync_mode.tick(timeout=2.0)
assert len(simulation_data) == len(self.world.camera_manager.sensors.keys()) + 1 # +1 for snapshot data
world_snapshot = simulation_data[0] # maybe be used in future
sensors_data_dict = dict()
for i, key in enumerate(self.world.camera_manager.sensors.keys()):
sensors_data_dict.update({key: simulation_data[i+1]})
# Reset the environment if the agent is stuck or can't find any agents or
# if we have captured enough frames in this one
is_stuck = self._frames_since_last_capture >= args.num_empty_frames_before_reset
is_enough_datapoints = (self._captured_frames_since_restart + 1) % args.num_recordings_before_reset == 0
if (is_stuck or is_enough_datapoints) and args.save_data:
if is_stuck:
logging.warning("The agent is either stuck or can't find any agents!")
if is_enough_datapoints:
logging.info("Enough datapoints captured. The episode is going to restart.")
self._on_new_episode(args)
# If we dont sleep, the client will continue to render
self.reset_episode = True
continue
if (args.autopilot == False):
self.agent.update_information(self.world)
# Tick HUD
self.world.tick(self.clock)
processed_sensor_data = self._preprocess_sensor_data(sensors_data_dict)
# Rendering sensor images and creating KITTI datapoints for each frame
# TODO makes sense to have on_render only dealing with rendering not datapoint generation.
datapoints = self._render(self.display, processed_sensor_data, args)
# Rendering HUD
self.world.render(self.display)
pygame.display.flip()
if args.save_data:
point_clouds = []
lidar_heights = []
lidar_cam_mats = []
for key in processed_sensor_data.keys():
if 'lidar' in key:
point_cloud = processed_sensor_data[key]['points']
lidar_height = self.world.camera_manager.sensors[key]['transform'].location.z
lidar_cam_mat = self.world.camera_manager.sensors[key]['lidar_cam_mat']
point_clouds.append(point_cloud)
lidar_heights.append(lidar_height)
lidar_cam_mats.append(lidar_cam_mat)
rgb_image = processed_sensor_data['sensor.camera.rgb']['image']
self._save_datapoints(datapoints,
self.world.camera_manager.sensors['sensor.camera.rgb']['calibration'],
rgb_image,
point_clouds,
lidar_heights, lidar_cam_mats, args)
if (args.autopilot == False):
# Set new destination when target has been reached
if len(self.agent.get_local_planner()._waypoints_queue) < self.num_min_waypoints and args.loop:
self.agent.reroute(self.spawn_points)
self.tot_target_reached += 1
self.world.hud.notification("The target has been reached " +
str(self.tot_target_reached) + " times.", seconds=4.0)
elif len(self.agent.get_local_planner()._waypoints_queue) == 0 and not args.loop:
print("Target reached, mission accomplished...")
break
speed_limit = self.world.player.get_speed_limit()
self.agent.get_local_planner().set_speed(speed_limit)
control = self.agent.run_step()
self.world.player.apply_control(control)
def main():
"""Main method"""
argparser = argparse.ArgumentParser(
description='CARLA Automatic Control Client')
argparser.add_argument(
'-v', '--verbose',
action='store_true',
dest='debug',
help='Print debug information')
argparser.add_argument(
'--host',
metavar='H',
default='127.0.0.1',
help='IP of the host server (default: 127.0.0.1)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
argparser.add_argument(
'--res',
metavar='WIDTHxHEIGHT',
default='1248x384',
help='Window resolution (default: 1280x720)')
argparser.add_argument(
'--filter',
metavar='PATTERN',
default='vehicle.tesla.model3',
help='Actor filter (default: "vehicle.*")')
argparser.add_argument(
'--gamma',
default=2.2,
type=float,
help='Gamma correction of the camera (default: 2.2)')
argparser.add_argument(
'-l', '--loop',
action='store_true',
dest='loop',
help='Sets a new random destination upon reaching the previous one (default: False)')
argparser.add_argument(
'-s', '--seed',
help='Set seed for repeating executions (default: None)',
default=None,
type=int)
argparser.add_argument(
'--vis_lidar',
action='store_true',
dest='vis_lidar',
help='Whether or not to visualize lidar point clouds.')
argparser.add_argument(
'--vis_boxes3d',
action='store_true',
dest='vis_boxes3d',
help='Whether or not to visualize 3D bounding boxes for agents.')
argparser.add_argument(
'--vis_boxes2d',
action='store_true',
dest='vis_boxes2d',
help='Whether or not to visualize 2D bounding boxes for agents.')
argparser.add_argument(
'--vis_ry',
action='store_true',
dest='vis_ry',
help='Whether or not to visualize rotation ry of agents around Y-axis.')
argparser.add_argument(
'--vis_alpha',
action='store_true',
dest='vis_alpha',
help='Whether or not to visualize alpha.')
argparser.add_argument(
'--steps_between_recordings',
default=10,
type=int,
help='How many frames to wait between each capture of screen, bounding boxes and lidar.')
argparser.add_argument(
'--lidar_data_format',
default='bin',
type=str,
help='Lidar can be saved in bin to comply to kitti, or the standard .ply format')
argparser.add_argument(
'--distance_since_last_recording',
default=10.,
type=float,
help='How many meters the car must drive before a new capture is triggered.')
argparser.add_argument(
'--num_recordings_before_reset',
default=20,
type=int,
help='How many datapoints to record before resetting the scene.')
argparser.add_argument(
'--num_empty_frames_before_reset',
default=100,
type=int,
help='How many frames to render before resetting the environment. For example, the agent may be stuck')
argparser.add_argument(
'--lidars',
nargs='+',
help='List of lidar types used for visualization and data collection.' +
'Available options are \"ray_cast\" and \"blickfeld\"',
default=['ray_cast'])
argparser.add_argument(
'--lidar_range',
default=100.,
type=float,
help='Max render depth in meters')
argparser.add_argument(
'--save_data',
action='store_true',
dest='save_data',
help='Whether or not to save training data')
argparser.add_argument(
'--phase',
default='training',
type=str,
help='Phase can be one of (training|val|test)')
argparser.add_argument(
'--output_dir',
default='./data/object',
type=str,
help='Path to output directory')
argparser.add_argument(
'--fps',
default=10,
type=int,
help='Simulation FPS')
argparser.add_argument(
'-a', '--autopilot',
action='store_true',
help='Enable default autopilot. If not, a behavior agent will be used')
carla_root = os.getenv('CARLA_ROOT')
assert carla_root is not None, 'Please set the CARLA_ROOT variable environment!'
# TODO this is a workaround for spawning pedestrians and vehicles. In future should be replaced by
# scenario runner configs
spawn_npc_path = os.path.join(carla_root, 'PythonAPI', 'examples', 'generate_traffic.py')
def target(**kwargs):
process = subprocess.Popen([spawn_npc_path, '-w 200'], **kwargs)
process.communicate()
thread = threading.Thread(target=target, kwargs={'stdout':subprocess.PIPE, 'shell':True})
thread.start()
args = argparser.parse_args()
phase_dir = os.path.join(args.output_dir, args.phase)
default_folders = ['calib', 'image_2', 'label_2', 'velodyne', 'planes']
assert all([lidar in ['ray_cast', 'blickfeld'] for lidar in args.lidars])
""" DATA SAVE PATHS """
args.phase_dir = phase_dir
args.label_path = os.path.join(phase_dir, 'label_2/{0:06}.txt')
args.image_path = os.path.join(phase_dir, 'image_2/{0:06}.png')
args.width, args.height = [int(x) for x in args.res.split('x')]
if args.save_data:
default_groundplane_path = os.path.join(phase_dir, 'planes/{0:06}.txt')
default_lidar_path = os.path.join(phase_dir, 'velodyne/{0:06}.bin')
default_calibration_path = os.path.join(phase_dir, 'calib/{0:06}.txt')
groundplane_paths = [default_groundplane_path]
lidar_paths = [default_lidar_path]
calibration_paths = [default_calibration_path]
if len(args.lidars) > 1:
logging.warning('More than one lidar type is provided.' +
'The first lidar type gets default names for kitti dataset.' +
'Others will get default names with a postfix.')
for lidar in args.lidars[1:]:
default_folders.append(f'planes_{lidar}')
default_folders.append(f'velodyne_{lidar}')
default_folders.append(f'calib_{lidar}')
groundplane_paths.append(os.path.join(phase_dir, f'planes_{lidar}', '{0:06}.txt'))
lidar_paths.append(os.path.join(phase_dir, f'velodyne_{lidar}', '{0:06}.bin'))
calibration_paths.append(os.path.join(phase_dir, f'calib_{lidar}', '{0:06}.txt'))
for folder in default_folders:
directory = os.path.join(phase_dir, folder)
if not os.path.exists(directory):
os.makedirs(directory)
args.groundplane_paths = groundplane_paths
args.lidar_paths = lidar_paths
args.calibration_paths = calibration_paths
log_level = logging.DEBUG if args.debug else logging.WARNING
logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level)
logging.info('listening to server %s:%s', args.host, args.port)
print(__doc__)
carla_game = CarlaGame(args)
try:
carla_game.game_loop(args)
except KeyboardInterrupt:
print('\nCancelled by user. Bye!')
if __name__ == '__main__':
main()