forked from dragen1860/CapsNet-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
257 lines (192 loc) · 9.15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
from torchvision import datasets, transforms
from tqdm import tqdm
import os
from tensorboardX import SummaryWriter
glo_batch_size = 100
data_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,),(0.3081,))
])
train_loader = torch.utils.data.DataLoader(datasets.MNIST('mnist', train = True, download = True, transform = data_transform),
batch_size = glo_batch_size, shuffle = True
)
test_loader = torch.utils.data.DataLoader(datasets.MNIST('mnist', train = False, download = True, transform = data_transform),
batch_size = glo_batch_size, shuffle = True
)
class CapsNet(nn.Module):
conv1_kernel_size = 9
conv1_kernel_num = 256
conv1_stride = 1
caps1_conv_kernel_size = 9
caps1_conv_kernel_num = 32
caps1_conv1_stride = 2
caps1_num = 8
output_num = 10
output_size = 16
batch_size = glo_batch_size
def __init__(self, dataloader):
super(CapsNet, self).__init__()
self.dataloader = dataloader
self.build()
def create_cell_fn(self):
"""
create sub-network inside a capsule.
:return:
"""
conv1 = nn.Conv2d(self.conv1_kernel_num, self.caps1_conv_kernel_num, kernel_size = self.caps1_conv_kernel_size, stride = self.caps1_conv1_stride)
#relu = nn.ReLU(inplace = True)
#net = nn.Sequential(conv1, relu)
return conv1
def build(self):
conv1 = nn.Conv2d(1, self.conv1_kernel_num, kernel_size = self.conv1_kernel_size, stride = self.conv1_stride)
relu1 = nn.ReLU(inplace = True)
caps1_cells = [self.create_cell_fn() for i in range(self.caps1_num)]
cap1 = Caps(caps1_cells)
route1 = Route(self.caps1_num, 6*6*self.caps1_conv_kernel_num, self.output_num, self.output_size, batch_size = self.batch_size)
self.net = nn.Sequential(conv1, relu1, cap1, route1)
def forward(self, input):
return self.net(input)
def margin_loss(self, input, target):
v_mod = torch.sqrt(torch.mul(input,input).sum(dim = 2, keepdim = True))
m_plus = 0.9
m_minus = 0.1
zero_val = Variable(torch.zeros(1)).cuda()
max_l = torch.max(m_plus - v_mod, zero_val).view(self.batch_size, -1)
max_r = torch.max(v_mod - m_minus, zero_val).view(self.batch_size, -1)
Lc = target * max_l + 0.5 * (1 - target) * (max_r)
Lc = Lc.sum(dim = 1).mean()
return Lc
class Route(nn.Module):
def __init__(self, in_caps_num, in_caps_size, out_caps_num, out_caps_size, batch_size):
super(Route, self).__init__()
self.in_caps_num = in_caps_num
self.in_caps_size = in_caps_size
self.out_caps_num = out_caps_num
self.out_caps_size = out_caps_size
self.batch_size = glo_batch_size
#we can not use batch_size for W parameters as the network does not include batch factor.
self.W = nn.Parameter(torch.randn(1, in_caps_size, out_caps_num, out_caps_size, in_caps_num))
def softmax(self, input, dim):
input_ex = torch.exp(input)
return input_ex / input_ex.sum(dim, keepdim = True)
def squash(self, input):
mod_sq = torch.sum(input**2, dim = 2, keepdim = True)
mod = torch.sqrt(mod_sq)
return (mod / (1 + mod)) * (input / mod_sq)
def forward(self, input):
#input (batch, in_caps_num, in_caps_size) => (batch, in_caps_size, in_caps_num)
input = torch.transpose(input, 1, 2)
#input (batch, vectorsin_caps_size, in_caps_num) =.(batch, in_caps_size, out_caps_num, in_caps_num, 1)
input = torch.stack([input]*self.out_caps_num, dim = 2).unsqueeze(4)
#u_hat : (batch, in_caps_size, out_caps_num, out_caps_size, 1)
# = (batch, in_caps_size, out_caps_num, out_caps_size, in_caps_num)
# * (batch, in_caps_size, out_caps_num, in_caps_num, 1)
u_hat = torch.matmul(torch.cat([self.W] * self.batch_size, 0) , input)
#initialzie b_ij according to prior prob distribution
#b_ij (1, in_caps_size, out_caps_num, 1), do not include batch_size
b_ij = Variable(torch.zeros(1, self.in_caps_size, self.out_caps_num, 1)).cuda()
#start routing now.
for _ in range(3):
#convert to coupling parameters, (batch_size, in_caps_size, out_caps_num, 1)
c_ij = self.softmax(b_ij, dim = 2)
c_ij = torch.cat([c_ij] * self.batch_size, dim = 0).unsqueeze(4)
#Here using broadcasting mechnism.
#s_j : (batch, in_caps_size, out_caps_num, out_caps_size, 1)
# = (batch, in_caps_size, out_caps_num, 1, 1)
# * (batch, in_caps_size, out_caps_num, out_caps_size, 1)
#sum: (batch, 1 , out_caps_num, out_caps_size, 1)
s_j = torch.mul(c_ij, u_hat).sum(dim = 1, keepdim = True)
#squash s_j to v_j (batch, 1, out_caps_num, out_caps_size, 1)
v_j = self.squash(s_j)
#in order to satifiy u_hat * v_j, we expand its dimension
#=> (batch, in_caps_size, out_caps_num, out_caps_size, 1)
v_j_ext = torch.cat([v_j] * self.in_caps_size, dim = 1)
#u_hat transpose => (batch, in_caps_size, out_caps_num, 1, out_caps_size)
#v_j_ext (batch, in_caps_size, out_caps_num, out_caps_size, 1)
#matmul => (batch, in_caps_size, out_caps_num, 1 , 1)
#seueeze => (batch, in_caps_size, out_caps_num, 1)
#mean => ( 1 , in_caps_size, out_caps_num, 1)
uv = torch.matmul(u_hat.transpose(3,4), v_j_ext).squeeze(4).mean(dim = 0, keepdim = True)
#update b_ij
b_ij = b_ij + uv
#return (batch, out_caps_num, out_caps_size, 1)
return v_j.squeeze(1)
class Caps(nn.Module):
"""
Capsule layer, this layer is a wrapper of any kinds of sub-layer inside single capsule. When initialized, it received a create_cell_fn to create each
sub network for each capsules and compute each capsule output.
In the feature, we can put all current network as a capsule unit.
"""
def __init__(self, cells):
super(Caps, self).__init__()
self.cells = cells
self.caps_num = len(cells)
for i, cell in enumerate(cells):
self.add_module("subnet"+str(i),cell)
def forward(self, input):
#u=[val] : val: (batch, channels, height, width)
u = [self.cells[i](input) for i in range(self.caps_num)]
# stack the caps_num axis before channels axis.
#=> (batch, caps_num, channels, height, width)
u = torch.stack(u, dim = 1)
#flat to (batch, caps_num, output)
u = u.view(input.size(0), self.caps_num, -1)
#squash output
return self.squash(u)
def squash(self, input):
mod_sq = torch.sum(input**2, dim = 2, keepdim = True)
mod = torch.sqrt(mod_sq)
return (mod / (1 + mod)) * (input / mod_sq)
def to_one_hot(x, length):
batch_size = x.size(0)
x_one_hot = torch.zeros(batch_size, length)
for i in range(batch_size):
x_one_hot[i, x[i]] = 1.0
return x_one_hot
if __name__ == '__main__':
net = CapsNet(train_loader)
net.cuda()
print(net)
optimizer = optim.Adam(net.parameters(), lr = 1e-3)
tb = SummaryWriter()
if os.path.exists('mdl'):
with open('mdl','rb') as f:
net = torch.load('mdl')
print('load mdl yet.')
for epoch in range(30):
net.train()
for batch_idx, (data, target) in enumerate(tqdm(train_loader, total = len(train_loader), ncols=100, leave=False, unit='b'+str(epoch))):
target_onehot = to_one_hot(target, 10)
data, target = Variable(data).cuda(), Variable(target_onehot).cuda()
optimizer.zero_grad()
output = net(data)
loss = net.margin_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 50 == 0 and batch_idx != 0:
tb.add_scalar('loss', loss.data[0])
net.eval()
correct_prediction = 0.0
total_counter = 0
for batch_idx, (data, target) in enumerate(test_loader):
data, target = Variable(data).cuda(), Variable(target.type(torch.LongTensor)).cuda()
#pred [batch, out_caps_num, out_caps_size, 1]
pred = net(data)
# pred_mod [batch, out_caps_num, 1, 1] => [batch, out_caps_num]
pred_mod = pred.mul(pred).sum(dim = 2).sqrt().squeeze(2)
# v1 [batch]
_ , v1 = torch.max(pred_mod , dim = 1)
correct_prediction += target.eq(v1).sum().data.cpu().numpy()[0]
total_counter += glo_batch_size
if batch_idx % 100 == 0:
tb.add_scalar('accuracy', correct_prediction/(total_counter))
break
print(epoch, 'test accuracy:', correct_prediction/(total_counter))
torch.save(net, 'mdl')
print('saved to mol file.')
tb.close()