forked from AlexHarker/HISSTools_Library
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWindowFunctions.hpp
executable file
·664 lines (537 loc) · 21.9 KB
/
WindowFunctions.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
#ifndef WINDOWFUNCTIONS_HPP
#define WINDOWFUNCTIONS_HPP
#include <algorithm>
#include <cstdint>
#include <cmath>
#include <limits>
#include <vector>
// Coefficients (and the basis for naming) can larged be found in:
//
// Nuttall, A. (1981). Some windows with very good sidelobe behavior.
// IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(1), 84-91.
//
// Similar windows / additional flat-top windows from:
//
// Heinzel, G., Rüdiger, A., & Schilling, R. (2002).
// Spectrum and spectral density estimation by the Discrete Fourier transform (DFT),
// including a comprehensive list of window functions and some new flat-top windows.
namespace window_functions
{
// Parameter struct
struct params
{
constexpr params(double A0 = 0.0, double A1 = 0.0, double A2 = 0.0, double A3 = 0.0, double A4 = 0.0, double exp = 1.0)
: a0(A0), a1(A1), a2(A2), a3(A3), a4(A4), exponent(exp) {}
constexpr params(const double *param_array, int N, double exp)
: a0(N > 0 ? param_array[0] : 0.0)
, a1(N > 1 ? param_array[1] : 0.0)
, a2(N > 2 ? param_array[2] : 0.0)
, a3(N > 3 ? param_array[3] : 0.0)
, a4(N > 4 ? param_array[4] : 0.0)
, exponent(exp) {}
double a0;
double a1;
double a2;
double a3;
double a4;
double exponent;
};
using window_func = double(uint32_t, uint32_t, const params&);
template <class T>
using window_generator = void(T*, uint32_t, uint32_t, uint32_t, const params&);
namespace impl
{
// Constexpr functions for convenience
constexpr double pi() { return M_PI; }
constexpr double pi2() { return M_PI * 2.0; }
constexpr double pi4() { return M_PI * 4.0; }
constexpr double pi6() { return M_PI * 6.0; }
constexpr double pi8() { return M_PI * 8.0; }
constexpr double div(int x, int y)
{
return static_cast<double>(x) / static_cast<double>(y);
}
// Operators for cosine sum windows
struct constant
{
constant(double v) : value(v) {}
inline double operator()(double x) { return value; }
const double value;
};
struct cosx
{
cosx(double c, double mul)
: coefficient(c), multiplier(mul) {}
inline double operator()(double x)
{
return coefficient * cos(x * multiplier);
}
const double coefficient;
const double multiplier;
};
// Normalisation helper
static inline double normalise(uint32_t x, uint32_t N)
{
return static_cast<double>(x) / static_cast<double>(N);
}
// Summing functions for cosine sum windows
template <typename T>
inline double sum(double x, T op)
{
return op(x);
}
template <typename T, typename ...Ts>
inline double sum(double x, T op, Ts... ops)
{
return sum(x, op) + sum(x, ops...);
}
template <typename ...Ts>
inline double sum(uint32_t i, uint32_t N, Ts... ops)
{
return sum(normalise(i, N), ops...);
}
// Specific window calculations
inline double rect(uint32_t i, uint32_t N, const params& p)
{
return 1.0;
}
inline double triangle(uint32_t i, uint32_t N, const params& p)
{
return 1.0 - fabs(normalise(i, N) * 2.0 - 1.0);
}
inline double trapezoid(uint32_t i, uint32_t N, const params& p)
{
double a = p.a0;
double b = p.a1;
if (b < a)
std::swap(a, b);
const double x = normalise(i, N);
if (x < a)
return x / a;
if (x > b)
return 1.0 - ((x - b) / (1.0 - b));
return 1.0;
}
inline double welch(uint32_t i, uint32_t N, const params& p)
{
const double x = 2.0 * normalise(i, N) - 1.0;
return 1.0 - x * x;
}
inline double parzen(uint32_t i, uint32_t N, const params& p)
{
const double N2 = static_cast<double>(N) * 0.5;
auto w0 = [&](double x)
{
x = fabs(x) / N2;
if (x > 0.5)
{
double v = (1.0 - x);
return 2.0 * v * v * v;
}
return 1.0 - 6.0 * x * x * (1.0 - x);
};
return w0(static_cast<double>(i) - N2);
}
inline double sine(uint32_t i, uint32_t N, const params& p)
{
return sin(pi() * normalise(i, N));
}
inline double sine_taper(uint32_t i, uint32_t N, const params& p)
{
return sin(p.a0 * pi() * normalise(i, N));
}
inline double tukey(uint32_t i, uint32_t N, const params& p)
{
return 0.5 - 0.5 * cos(trapezoid(i, N, p) * pi());
}
inline double izero(double x2)
{
double term = 1.0;
double bessel = 1.0;
// N.B. - loop based on epsilon for maximum accuracy
for (unsigned long i = 1; term > std::numeric_limits<double>::epsilon(); i++)
{
const double i2 = static_cast<double>(i * i);
term = term * x2 * (1.0 / (4.0 * i2));
bessel += term;
}
return bessel;
}
inline double kaiser(uint32_t i, uint32_t N, const params& p)
{
double x = 2.0 * normalise(i, N) - 1.0;
return izero((1.0 - x * x) * p.a0 * p.a0) * p.a1;
}
inline double cosine_2_term(uint32_t i, uint32_t N, const params& p)
{
return sum(i, N, constant(p.a0), cosx(-(1.0 - p.a0), pi2()));
}
inline double cosine_3_term(uint32_t i, uint32_t N, const params& p)
{
return sum(i, N, constant(p.a0), cosx(-p.a1, pi2()), cosx(p.a2, pi4()));
}
inline double cosine_4_term(uint32_t i, uint32_t N, const params& p)
{
return sum(i, N, constant(p.a0), cosx(-p.a1, pi2()), cosx(p.a2, pi4()), cosx(-p.a3, pi6()));
}
inline double cosine_5_term(uint32_t i, uint32_t N, const params& p)
{
return sum(i, N, constant(p.a0),
cosx(-p.a1, pi2()),
cosx(p.a2, pi4()),
cosx(-p.a3, pi6()),
cosx(p.a4, pi8()));
}
inline double hann(uint32_t i, uint32_t N, const params& p)
{
return cosine_2_term(i, N, params(0.5));
}
inline double hamming(uint32_t i, uint32_t N, const params& p)
{
// N.B. here we use approx alpha of 0.54 (not 25/46 or 0.543478260869565)
// see equiripple notes on wikipedia
return cosine_2_term(i, N, params(0.54));
}
inline double blackman(uint32_t i, uint32_t N, const params& p)
{
return cosine_3_term(i, N, params(0.42, 0.5, 0.08));
}
inline double exact_blackman(uint32_t i, uint32_t N, const params& p)
{
const params pb(div(7938, 18608), div(9240, 18608), div(1430, 18608));
return cosine_3_term(i, N, pb);
}
inline double blackman_harris_62dB(uint32_t i, uint32_t N, const params& p)
{
return cosine_3_term(i, N, params(0.44959, 0.49364, 0.05677));
}
inline double blackman_harris_71dB(uint32_t i, uint32_t N, const params& p)
{
return cosine_3_term(i, N, params(0.42323, 0.49755, 0.07922));
}
inline double blackman_harris_74dB(uint32_t i, uint32_t N, const params& p)
{
return cosine_4_term(i, N, params(0.402217, 0.49703, 0.09892, 0.00188));
}
inline double blackman_harris_92dB(uint32_t i, uint32_t N, const params& p)
{
return cosine_4_term(i, N, params(0.35875, 0.48829, 0.14128, 0.01168));
}
inline double nuttall_1st_64dB(uint32_t i, uint32_t N, const params& p)
{
return cosine_3_term(i, N, params(0.40897, 0.5, 0.09103));
}
inline double nuttall_1st_93dB(uint32_t i, uint32_t N, const params& p)
{
return cosine_4_term(i, N, params(0.355768, 0.487396, 0.144232, 0.012604));
}
inline double nuttall_3rd_47dB(uint32_t i, uint32_t N, const params& p)
{
return cosine_3_term(i, N, params(0.375, 0.5, 0.125));
}
inline double nuttall_3rd_83dB(uint32_t i, uint32_t N, const params& p)
{
return cosine_4_term(i, N, params(0.338946, 0.481973, 0.161054, 0.018027));
}
inline double nuttall_5th_61dB(uint32_t i, uint32_t N, const params& p)
{
return cosine_4_term(i, N, params(0.3125, 0.46875, 0.1875, 0.03125));
}
inline double nuttall_minimal_71dB(uint32_t i, uint32_t N, const params& p)
{
return cosine_3_term(i, N, params(0.4243801, 0.4973406, 0.0782793));
}
inline double nuttall_minimal_98dB(uint32_t i, uint32_t N, const params& p)
{
return cosine_4_term(i, N, params(0.3635819, 0.4891775, 0.1365995, 0.0106411));
}
inline double ni_flat_top(uint32_t i, uint32_t N, const params& p)
{
return cosine_3_term(i, N, params(0.2810639, 0.5208972, 0.1980399));
}
inline double hp_flat_top(uint32_t i, uint32_t N, const params& p)
{
return cosine_4_term(i, N, params(1.0, 1.912510941, 1.079173272, 0.1832630879));
}
inline double stanford_flat_top(uint32_t i, uint32_t N, const params& p)
{
return cosine_5_term(i, N, params(1.0, 1.939, 1.29, 0.388, 0.028));
}
inline double heinzel_flat_top_70dB(uint32_t i, uint32_t N, const params& p)
{
return cosine_4_term(i, N, params(1.0, 1.90796, 1.07349, 0.18199));
}
inline double heinzel_flat_top_90dB(uint32_t i, uint32_t N, const params& p)
{
return cosine_5_term(i, N, params(1.0, 1.942604, 1.340318, 0.440811, 0.043097));
}
inline double heinzel_flat_top_95dB(uint32_t i, uint32_t N, const params& p)
{
return cosine_5_term(i, N, params(1.0, 1.9383379, 1.3045202, 0.4028270, 0.0350665));
}
// Abstract generator
template <window_func Func, bool symmetric, class T>
void inline generate(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
auto sq = [&](double x) { return x * x; };
auto cb = [&](double x) { return x * x * x; };
auto qb = [&](double x) { return sq(sq(x)); };
auto toType = [](double x) { return static_cast<T>(x); };
const T *copy_first = nullptr;
const T *copy_last = nullptr;
T *out_first = nullptr;
end = std::min(N + 1, end);
begin = std::min(begin, end);
if (symmetric)
{
uint32_t M = (N/2) + 1;
if (begin < M && end > M + 1)
{
uint32_t begin_n = M - begin;
uint32_t end_n = (end - begin) - begin_n;
if (begin_n > end_n)
{
copy_last = window + (N+1)/2 - begin;
copy_first = copy_last - end_n;
out_first = window + begin_n;
end = M;
}
else
{
copy_first = window + (N+1)/2 + 1 - begin;
copy_last = copy_first + (begin_n - 1);
out_first = window;
window += M - (begin + 1);
begin = M - 1;
}
}
}
if (p.exponent == 1.0)
{
for (uint32_t i = begin; i < end; i++)
*window++ = toType(Func(i, N, p));
}
else if (p.exponent == 0.5)
{
for (uint32_t i = begin; i < end; i++)
*window++ = toType(std::sqrt(Func(i, N, p)));
}
else if (p.exponent == 2.0)
{
for (uint32_t i = begin; i < end; i++)
*window++ = toType(sq(Func(i, N, p)));
}
else if (p.exponent == 3.0)
{
for (uint32_t i = begin; i < end; i++)
*window++ = toType(cb(Func(i, N, p)));
}
else if (p.exponent == 4.0)
{
for (uint32_t i = begin; i < end; i++)
*window++ = toType(qb(Func(i, N, p)));
}
else if (p.exponent > 0 && p.exponent <= std::numeric_limits<int>().max() && p.exponent == std::floor(p.exponent))
{
int exponent = static_cast<int>(p.exponent);
for (uint32_t i = begin; i < end; i++)
*window++ = toType(std::pow(Func(i, N, p), exponent));
}
else
{
for (uint32_t i = begin; i < end; i++)
*window++ = toType(std::pow(Func(i, N, p), p.exponent));
}
if (symmetric && out_first)
std::reverse_copy(copy_first, copy_last, out_first);
}
}
// Specific window generators
template <class T>
void rect(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::rect, true>(window, N, begin, end, p);
}
template <class T>
void triangle(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::triangle, true>(window, N, begin, end, p);
}
template <class T>
void trapezoid(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::trapezoid, false>(window, N, begin, end, p);
}
template <class T>
void welch(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::welch, true>(window, N, begin, end, p);
}
template <class T>
void parzen(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::parzen, true>(window, N, begin, end, p);
}
template <class T>
void sine(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::sine, true>(window, N, begin, end, p);
}
template <class T>
void sine_taper(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
params p1(std::round(p.a0));
p1.exponent = p.exponent;
impl::generate<impl::sine_taper, false>(window, N, begin, end, p1);
}
template <class T>
void tukey(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
params p1(p.a0 * 0.5, 1.0 - (p.a0 * 0.5));
p1.exponent = p.exponent;
impl::generate<impl::tukey, true>(window, N, begin, end, p1);
}
template <class T>
void kaiser(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
params p1(p.a0, 1.0 / impl::izero(p.a0 * p.a0));
p1.exponent = p.exponent;
impl::generate<impl::kaiser, true>(window, N, begin, end, p1);
}
template <class T>
void cosine_2_term(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::cosine_2_term, true>(window, N, begin, end, p);
}
template <class T>
void cosine_3_term(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::cosine_3_term, true>(window, N, begin, end, p);
}
template <class T>
void cosine_4_term(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::cosine_4_term, true>(window, N, begin, end, p);
}
template <class T>
void cosine_5_term(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::cosine_5_term, true>(window, N, begin, end, p);
}
template <class T>
void hann(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::hann, true>(window, N, begin, end, p);
}
template <class T>
void hamming(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::hamming, true>(window, N, begin, end, p);
}
template <class T>
void blackman(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::blackman, true>(window, N, begin, end, p);
}
template <class T>
void exact_blackman(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::exact_blackman, true>(window, N, begin, end, p);
}
template <class T>
void blackman_harris_62dB(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::blackman_harris_62dB, true>(window, N, begin, end, p);
}
template <class T>
void blackman_harris_71dB(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::blackman_harris_71dB, true>(window, N, begin, end, p);
}
template <class T>
void blackman_harris_74dB(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::blackman_harris_74dB, true>(window, N, begin, end, p);
}
template <class T>
void blackman_harris_92dB(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::blackman_harris_92dB, true>(window, N, begin, end, p);
}
template <class T>
void nuttall_1st_64dB(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::nuttall_1st_64dB, true>(window, N, begin, end, p);
}
template <class T>
void nuttall_1st_93dB(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::nuttall_1st_93dB, true>(window, N, begin, end, p);
}
template <class T>
void nuttall_3rd_47dB(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::nuttall_3rd_47dB, true>(window, N, begin, end, p);
}
template <class T>
void nuttall_3rd_83dB(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::nuttall_3rd_83dB, true>(window, N, begin, end, p);
}
template <class T>
void nuttall_5th_61dB(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::nuttall_5th_61dB, true>(window, N, begin, end, p);
}
template <class T>
void nuttall_minimal_71dB(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::nuttall_minimal_71dB, true>(window, N, begin, end, p);
}
template <class T>
void nuttall_minimal_98dB(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::nuttall_minimal_98dB, true>(window, N, begin, end, p);
}
template <class T>
void ni_flat_top(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::ni_flat_top, true>(window, N, begin, end, p);
}
template <class T>
void hp_flat_top(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::hp_flat_top, true>(window, N, begin, end, p);
}
template <class T>
void stanford_flat_top(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::stanford_flat_top, true>(window, N, begin, end, p);
}
template <class T>
void heinzel_flat_top_70dB(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::heinzel_flat_top_70dB, true>(window, N, begin, end, p);
}
template <class T>
void heinzel_flat_top_90dB(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::heinzel_flat_top_90dB, true>(window, N, begin, end, p);
}
template <class T>
void heinzel_flat_top_95dB(T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
impl::generate<impl::heinzel_flat_top_95dB, true>(window, N, begin, end, p);
}
template <class T, window_generator<T> ...gens>
struct indexed_generator
{
void operator()(size_t type, T *window, uint32_t N, uint32_t begin, uint32_t end, const params& p)
{
return generators[type](window, N, begin, end, p);
}
window_generator<T> *get(size_t type) {return generators[type]; }
window_generator<T> *generators[sizeof...(gens)] = { gens... };
};
}
#endif