diff --git a/caiman/base/movies.py b/caiman/base/movies.py index 1dc61924d..1322d22a9 100644 --- a/caiman/base/movies.py +++ b/caiman/base/movies.py @@ -318,10 +318,12 @@ def extract_shifts(self, max_shift_w: int = 5, max_shift_h: int = 5, template=No Exception 'Unknown motion correction method!' """ + logger = logging.getLogger("caiman") + min_val = np.percentile(self, 1) if min_val < -0.1: - logging.debug("min_val in extract_shifts: " + str(min_val)) - logging.warning('Movie average is negative. Removing 1st percentile.') + logger.debug(f"min_val in extract_shifts: {min_val}") + logger.warning('Movie average is negative. Removing 1st percentile.') self = self - min_val else: min_val = 0 @@ -339,7 +341,7 @@ def extract_shifts(self, max_shift_w: int = 5, max_shift_h: int = 5, template=No template = np.median(self, axis=0) else: if np.percentile(template, 8) < -0.1: - logging.warning('Movie average is negative. Removing 1st percentile.') + logger.warning('Movie average is negative. Removing 1st percentile.') template = template - np.percentile(template, 1) template = template[ms_h:h_i - ms_h, ms_w:w_i - ms_w].astype(np.float32) @@ -350,7 +352,7 @@ def extract_shifts(self, max_shift_w: int = 5, max_shift_h: int = 5, template=No for i, frame in enumerate(self): if i % 100 == 99: - logging.debug(f"Frame {i + 1}") + logger.debug(f"Frame {i + 1}") if method == 'opencv': res = cv2.matchTemplate(frame, template, cv2.TM_CCORR_NORMED) top_left = cv2.minMaxLoc(res)[3] @@ -408,6 +410,8 @@ def apply_shifts(self, shifts, interpolation: str = 'linear', method: str = 'ope Exception 'Method not defined' """ + logger = logging.getLogger("caiman") + if not isinstance(self[0, 0, 0], np.float32): warnings.warn('Casting the array to float32') self = np.asanyarray(self, dtype=np.float32) @@ -417,40 +421,40 @@ def apply_shifts(self, shifts, interpolation: str = 'linear', method: str = 'ope interpolation = cv2.INTER_CUBIC else: interpolation = 3 - logging.debug('cubic interpolation') + logger.debug('cubic interpolation') elif interpolation == 'nearest': if method == 'opencv': interpolation = cv2.INTER_NEAREST else: interpolation = 0 - logging.debug('nearest interpolation') + logger.debug('nearest interpolation') elif interpolation == 'linear': if method == 'opencv': interpolation = cv2.INTER_LINEAR else: interpolation = 1 - logging.debug('linear interpolation') + logger.debug('linear interpolation') elif interpolation == 'area': if method == 'opencv': interpolation = cv2.INTER_AREA else: raise Exception('Method not defined') - logging.debug('area interpolation') + logger.debug('area interpolation') elif interpolation == 'lanczos4': if method == 'opencv': interpolation = cv2.INTER_LANCZOS4 else: interpolation = 4 - logging.debug('lanczos/biquartic interpolation') + logger.debug('lanczos/biquartic interpolation') else: raise Exception('Interpolation method not available') _, h, w = self.shape for i, frame in enumerate(self): if i % 100 == 99: - logging.debug(f"Frame {i + 1}") + logger.debug(f"Frame {i + 1}") sh_x_n, sh_y_n = shifts[i] @@ -587,26 +591,28 @@ def computeDFF(self, secsWindow: int = 5, quantilMin: int = 8, method: str = 'on Raises: Exception 'Unknown method' """ - logging.debug("computing minimum ...") + logger = logging.getLogger("caiman") + + logger.debug("computing minimum ...") sys.stdout.flush() if np.min(self) <= 0 and method != 'only_baseline': raise ValueError("All pixels must be positive") numFrames, linePerFrame, pixPerLine = np.shape(self) downsampfact = int(secsWindow * self.fr) - logging.debug(f"Downsample factor: {downsampfact}") + logger.debug(f"Downsample factor: {downsampfact}") elm_missing = int(np.ceil(numFrames * 1.0 / downsampfact) * downsampfact - numFrames) padbefore = int(np.floor(elm_missing / 2.)) padafter = int(np.ceil(elm_missing / 2.)) - logging.debug('Initial Size Image:' + str(np.shape(self))) + logger.debug(f'Initial Size Image: {np.shape(self)}') sys.stdout.flush() mov_out = movie(np.pad(self.astype(np.float32), ((padbefore, padafter), (0, 0), (0, 0)), mode='reflect'), **self.__dict__) numFramesNew, linePerFrame, pixPerLine = np.shape(mov_out) # compute baseline quickly - logging.debug("binning data ...") + logger.debug("binning data ...") sys.stdout.flush() if not in_place: @@ -619,9 +625,9 @@ def computeDFF(self, secsWindow: int = 5, quantilMin: int = 8, method: str = 'on order=order) movBL = np.percentile(movBL, quantilMin, axis=0) - logging.debug("interpolating data ...") + logger.debug("interpolating data ...") sys.stdout.flush() - logging.debug(f"movBL shape is {movBL.shape}") + logger.debug(f"movBL shape is {movBL.shape}") movBL = scipy.ndimage.zoom(np.array(movBL, dtype=np.float32), [downsampfact, 1, 1], order=1, mode='constant', @@ -642,7 +648,7 @@ def computeDFF(self, secsWindow: int = 5, quantilMin: int = 8, method: str = 'on mov_out = movBL mov_out = mov_out[padbefore:len(movBL) - padafter, :, :] - logging.debug('Final Size Movie:' + str(self.shape)) + logger.debug(f'Final Size Movie: {self.shape}') return mov_out, movie(movBL, fr=self.fr, start_time=self.start_time, @@ -812,6 +818,8 @@ def local_correlations(self, rho: d1 x d2 [x d3] matrix, cross-correlation with adjacent pixels """ + logger = logging.getLogger("caiman") + T = self.shape[0] Cn = np.zeros(self.shape[1:]) if T <= 3000: @@ -823,7 +831,7 @@ def local_correlations(self, n_chunks = T // frames_per_chunk for jj, mv in enumerate(range(n_chunks - 1)): - logging.debug('number of chunks:' + str(jj) + ' frames: ' + + logger.debug('number of chunks:{jj} frames: ' + str([mv * frames_per_chunk, (mv + 1) * frames_per_chunk])) rho = caiman.summary_images.local_correlations(np.array(self[mv * frames_per_chunk:(mv + 1) * frames_per_chunk]), eight_neighbours=eight_neighbours, @@ -834,7 +842,7 @@ def local_correlations(self, plt.imshow(Cn, cmap='gray') plt.pause(.1) - logging.debug('number of chunks:' + str(n_chunks - 1) + ' frames: ' + + logger.debug(f'number of chunks: {n_chunks - 1} frames: ' + str([(n_chunks - 1) * frames_per_chunk, T])) rho = caiman.summary_images.local_correlations(np.array(self[(n_chunks - 1) * frames_per_chunk:]), eight_neighbours=eight_neighbours, @@ -929,16 +937,18 @@ def resize(self, fx=1, fy=1, fz=1, interpolation=cv2.INTER_AREA): Returns: self (caiman movie) """ + logger = logging.getLogger("caiman") + T, d1, d2 = self.shape d = d1 * d2 elm = d * T max_els = 2**61 - 1 # the bug for sizes >= 2**31 is appears to be fixed now - if elm > max_els: + if elm > max_els: # XXX do we still need this fallback then? chunk_size = max_els // d new_m:list = [] - logging.debug('Resizing in chunks because of opencv bug') + logger.debug('Resizing in chunks because of opencv bug') for chunk in range(0, T, chunk_size): - logging.debug([chunk, np.minimum(chunk + chunk_size, T)]) + logger.debug([chunk, np.minimum(chunk + chunk_size, T)]) m_tmp = self[chunk:np.minimum(chunk + chunk_size, T)].copy() m_tmp = m_tmp.resize(fx=fx, fy=fy, fz=fz, interpolation=interpolation) if len(new_m) == 0: @@ -949,16 +959,16 @@ def resize(self, fx=1, fy=1, fz=1, interpolation=cv2.INTER_AREA): return new_m else: if fx != 1 or fy != 1: - logging.debug("reshaping along x and y") + logger.debug("reshaping along x and y") t, h, w = self.shape newshape = (int(w * fy), int(h * fx)) mov = [] - logging.debug(f"New shape is {newshape}") + logger.debug(f"New shape is {newshape}") for frame in self: mov.append(cv2.resize(frame, newshape, fx=fx, fy=fy, interpolation=interpolation)) self = movie(np.asarray(mov), **self.__dict__) if fz != 1: - logging.debug("reshaping along z") + logger.debug("reshaping along z") t, h, w = self.shape self = np.reshape(self, (t, h * w)) mov = cv2.resize(self, (h * w, int(fz * t)), fx=1, fy=fz, interpolation=interpolation) @@ -972,9 +982,11 @@ def guided_filter_blur_2D(self, guide_filter, radius: int = 5, eps=0): """ performs guided filtering on each frame. See opencv documentation of cv2.ximgproc.guidedFilter """ + logger = logging.getLogger("caiman") + for idx, fr in enumerate(self): if idx % 1000 == 0: - logging.debug("At index: " + str(idx)) + logger.debug(f"At index: {idx}") self[idx] = cv2.ximgproc.guidedFilter(guide_filter, fr, radius=radius, eps=eps) return self @@ -983,13 +995,15 @@ def bilateral_blur_2D(self, diameter: int = 5, sigmaColor: int = 10000, sigmaSpa """ performs bilateral filtering on each frame. See opencv documentation of cv2.bilateralFilter """ + logger = logging.getLogger("caiman") + if not isinstance(self[0, 0, 0], np.float32): - warnings.warn('Casting the array to float32') + warnings.warn('Casting the array to float32') # XXX consider just using logger self = np.asanyarray(self, dtype=np.float32) for idx, fr in enumerate(self): if idx % 1000 == 0: - logging.debug("At index: " + str(idx)) + logger.debug("At index: " + str(idx)) self[idx] = cv2.bilateralFilter(fr, diameter, sigmaColor, sigmaSpace) return self @@ -1015,9 +1029,10 @@ def gaussian_blur_2D(self, self: ndarray blurred movie """ + logger = logging.getLogger("caiman") for idx, fr in enumerate(self): - logging.debug(idx) + logger.debug(idx) self[idx] = cv2.GaussianBlur(fr, ksize=(kernel_size_x, kernel_size_y), sigmaX=kernel_std_x, @@ -1044,9 +1059,10 @@ def median_blur_2D(self, kernel_size: float = 3.0): self: ndarray blurred movie """ + logger = logging.getLogger("caiman") for idx, fr in enumerate(self): - logging.debug(idx) + logger.debug(idx) self[idx] = cv2.medianBlur(fr, ksize=kernel_size) return self @@ -1207,13 +1223,15 @@ def load(file_name: Union[str, list[str]], Exception 'File not found!' """ + logger = logging.getLogger("caiman") + # case we load movie from file if max(top, bottom, left, right) > 0 and isinstance(file_name, str): file_name = [file_name] # type: ignore # mypy doesn't like that this changes type if isinstance(file_name, list): if shape is not None: - logging.error('shape parameter not supported for multiple movie input') + logger.error('shape parameter not supported for multiple movie input') return load_movie_chain(file_name, fr=fr, @@ -1230,10 +1248,10 @@ def load(file_name: Union[str, list[str]], is3D=is3D) elif isinstance(file_name, tuple): - logging.debug(f'**** Processing input file {file_name} as individual frames *****') + logger.debug(f'**** Processing input file {file_name} as individual frames *****') if shape is not None: # XXX Should this be an Exception? - logging.error('movies.py:load(): A shape parameter is not supported for multiple movie input') + logger.error('movies.py:load(): A shape parameter is not supported for multiple movie input') else: return load_movie_chain(tuple([iidd for iidd in np.array(file_name)[subindices]]), fr=fr, start_time=start_time, @@ -1243,10 +1261,10 @@ def load(file_name: Union[str, list[str]], # If we got here we're parsing a single movie file if max(top, bottom, left, right) > 0: - logging.error('movies.py:load(): Parameters top,bottom,left,right are not supported for single movie input') + logger.error('movies.py:load(): Parameters top,bottom,left,right are not supported for single movie input') if channel is not None: - logging.error('movies.py:load(): channel parameter is not supported for single movie input') + logger.error('movies.py:load(): channel parameter is not supported for single movie input') if os.path.exists(file_name): basename, extension = os.path.splitext(file_name) @@ -1257,8 +1275,8 @@ def load(file_name: Union[str, list[str]], with tifffile.TiffFile(file_name) as tffl: multi_page = True if tffl.series[0].shape[0] > 1 else False if len(tffl.pages) == 1: - logging.warning('Your tif file is saved a single page' + - 'file. Performance will be affected') + logger.warning('Your tif file is saved a single page' + + 'file. Performance will be affected') multi_page = False if subindices is not None: # if isinstance(subindices, (list, tuple)): # is list or tuple: @@ -1308,7 +1326,7 @@ def load(file_name: Union[str, list[str]], # # We have a fallback of trying to use the pims package if OpenCV fails if 'CAIMAN_LOAD_AVI_FORCE_FALLBACK' in os.environ: # User requested we don't even try opencv - logging.debug("Loading AVI/MKV file: PIMS codepath requested") + logger.debug("Loading AVI/MKV file: PIMS codepath requested") do_opencv = False else: cap = cv2.VideoCapture(file_name) @@ -1322,7 +1340,7 @@ def load(file_name: Union[str, list[str]], do_opencv = False cap.release() cv2.destroyAllWindows() - logging.warning(f"OpenCV failed to parse {file_name}, falling back to pims") + logger.warning(f"OpenCV failed to parse {file_name}, falling back to pims") else: do_opencv = True @@ -1404,7 +1422,7 @@ def load(file_name: Union[str, list[str]], elif isinstance(sb, np.ndarray): dims[ind] = sb.shape[0] start_frame = subindices[0][0] - logging.debug(f"Subinds not none: start frame: {start_frame} and subinds: {subindices}") + logger.debug(f"Subinds not none: start frame: {start_frame} and subinds: {subindices}") else: subindices = [np.r_[range(dims[0])]] start_frame = 0 @@ -1477,12 +1495,12 @@ def load(file_name: Union[str, list[str]], if type(subindices).__module__ == 'numpy': subindices = subindices.tolist() if len(fgroup.shape) > 3: - logging.warning(f'fgroup.shape has dimensionality greater than 3 {fgroup.shape} in load') + logger.warning(f'fgroup.shape has dimensionality greater than 3 {fgroup.shape} in load') images = np.array(fgroup[subindices]).squeeze() return movie(images.astype(outtype)) else: - logging.debug('KEYS:' + str(f.keys())) + logger.debug('KEYS:' + str(f.keys())) raise Exception('Key not found in hdf5 file') elif extension == '.mmap': @@ -1495,14 +1513,14 @@ def load(file_name: Union[str, list[str]], images = images[subindices] if in_memory: - logging.debug('loading mmap file in memory') + logger.debug('loading mmap file in memory') images = np.array(images).astype(outtype) - logging.debug('mmap') + logger.debug('mmap') return movie(images, fr=fr) elif extension == '.sbx': - logging.debug('sbx') + logger.debug('sbx') meta_data = caiman.utils.sbx_utils.sbx_meta_data(basename) input_arr = caiman.utils.sbx_utils.sbxread(basename, subindices) return movie(input_arr, fr=fr, @@ -1515,7 +1533,7 @@ def load(file_name: Union[str, list[str]], else: raise Exception('Unknown file type') else: - logging.error(f"File request:[{file_name}] not found!") + logger.error(f"File request:[{file_name}] not found!") raise Exception(f'File {file_name} not found!') return movie(input_arr.astype(outtype), @@ -1559,6 +1577,8 @@ def load_movie_chain(file_list: list[str], movie corresponding to the concatenation og the input files """ + logger = logging.getLogger("caiman") + mov = [] for f in tqdm(file_list): m = load(f, @@ -1570,9 +1590,9 @@ def load_movie_chain(file_list: list[str], outtype=outtype, var_name_hdf5=var_name_hdf5) if channel is not None: - logging.debug(m.shape) + logger.debug(m.shape) m = m[channel].squeeze() - logging.debug(f"Movie shape: {m.shape}") + logger.debug(f"Movie shape: {m.shape}") if not is3D: if m.ndim == 2: @@ -1600,6 +1620,7 @@ def _load_behavior(file_name:str) -> Any: # with a particular inner structure. The keys in that file are things like trial_1, trial_12, .. # I refactored this out of load() to improve clarity of that function and to make it more clear # that user code should not do things that way. + logger = logging.getLogger("caiman") if not isinstance(file_name, str): raise Exception(f'Invalid type in _load_behavior(); please do not use this function outside of demo_behavior.py') @@ -1612,7 +1633,7 @@ def _load_behavior(file_name:str) -> Any: kk.sort(key=lambda x: int(x.split('_')[-1])) input_arr = [] for trial in kk: - logging.info('Loading ' + trial) + logger.info(f'Loading {trial}') input_arr.append(np.array(f[trial]['mov'])) input_arr = np.vstack(input_arr) @@ -1620,7 +1641,7 @@ def _load_behavior(file_name:str) -> Any: raise Exception(f'_load_behavior() only accepts hdf5 files formatted a certain way. Please do not use this function.') else: - logging.error(f"File request:[{file_name}] not found!") + logger.error(f"File request:[{file_name}] not found!") raise Exception(f'File {file_name} not found!') # Defaults from movies.load() at time this was refactored out @@ -1653,8 +1674,10 @@ def from_zip_file_to_movie(zipfile_name: str, start_end:Optional[tuple] = None) Returns: movie ''' + logger = logging.getLogger("caiman") + mov:list = [] - logging.info('unzipping file into movie object') + logger.info('unzipping file into movie object') if start_end is not None: num_frames = start_end[1] - start_end[0] @@ -1671,7 +1694,7 @@ def from_zip_file_to_movie(zipfile_name: str, start_end:Optional[tuple] = None) mov[counter] = np.array(Image.open(file)) if counter % 100 == 0: - logging.debug(f"counter/idx: {counter} {idx}") + logger.debug(f"counter/idx: {counter} {idx}") counter += 1 @@ -1763,6 +1786,8 @@ def load_iter(file_name: Union[str, list[str]], subindices=None, var_name_hdf5: Exception 'File not found!' """ + logger = logging.getLogger("caiman") + if isinstance(file_name, list) or isinstance(file_name, tuple): for fname in file_name: iterator = load_iter(fname, subindices, var_name_hdf5, outtype) @@ -1814,7 +1839,7 @@ def load_iter(file_name: Union[str, list[str]], subindices=None, var_name_hdf5: elif extension in ('.avi', '.mkv'): # First, let's see if OpenCV can handle this AVI file if 'CAIMAN_LOAD_AVI_FORCE_FALLBACK' in os.environ: # User requested we don't even try opencv - logging.debug("Loading AVI/MKV file: PIMS codepath requested") + logger.debug("Loading AVI/MKV file: PIMS codepath requested") do_opencv = False else: cap = cv2.VideoCapture(file_name) @@ -1822,7 +1847,7 @@ def load_iter(file_name: Union[str, list[str]], subindices=None, var_name_hdf5: width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) if length <= 0 or width <= 0 or height <= 0: # Not a perfect way to do this, but it's a start. Could also do a try/except block? - logging.warning(f"OpenCV failed to parse {file_name}, falling back to pims") + logger.warning(f"OpenCV failed to parse {file_name}, falling back to pims") do_opencv = False # Close up shop, and get ready for the alternative cap.release() @@ -1912,7 +1937,7 @@ def load_iter(file_name: Union[str, list[str]], subindices=None, var_name_hdf5: subindices=subindices, outtype=outtype, is3D=is3D): yield y else: - logging.error(f"File request:[{file_name}] not found!") + logger.error(f"File request:[{file_name}] not found!") raise Exception('File not found!') def get_file_size(file_name, var_name_hdf5:str='mov') -> tuple[tuple, Union[int, tuple]]: @@ -1934,6 +1959,8 @@ def get_file_size(file_name, var_name_hdf5:str='mov') -> tuple[tuple, Union[int, number of timesteps in each file """ + logger = logging.getLogger("caiman") + # TODO There is a lot of redundant code between this, load(), and load_iter() that should be unified somehow if isinstance(file_name, pathlib.Path): # We want to support these as input, but str has a broader set of operations that we'd like to use, so let's just convert. @@ -1995,7 +2022,7 @@ def get_file_size(file_name, var_name_hdf5:str='mov') -> tuple[tuple, Union[int, elif var_name_hdf5 in f['acquisition']: siz = f['acquisition'][var_name_hdf5]['data'].shape else: - logging.error(f'The file does not contain a variable named {var_name_hdf5}') + logger.error(f'The file does not contain a variable named {var_name_hdf5}') raise Exception('Variable not found. Use one of the above') T, dims = siz[0], siz[1:] elif extension in ('.sbx'): @@ -2097,10 +2124,16 @@ def play_movie(movie, Raises: Exception 'Unknown backend!' """ + logger = logging.getLogger("caiman") + # todo: todocument - it = True if (isinstance(movie, list) or isinstance(movie, tuple) or isinstance(movie, str)) else False + if isinstance(movie, list) or isinstance(movie, tuple) or isinstance(movie, str): + it = True + else: + it = False + if backend == 'pyplot': - logging.warning('Using pyplot back end: not recommended. Using opencv will yield faster, higher-quality results.') + logger.warning('Using pyplot back end: not recommended. Using opencv will yield faster, higher-quality results.') gain = float(gain) # convert to float in case we were passed an int if q_max < 100: diff --git a/caiman/base/rois.py b/caiman/base/rois.py index 417405828..38b158404 100644 --- a/caiman/base/rois.py +++ b/caiman/base/rois.py @@ -212,6 +212,7 @@ def nf_match_neurons_in_binary_masks(masks_gt, indices false pos """ + logger = logging.getLogger("caiman") _, d1, d2 = np.shape(masks_gt) dims = d1, d2 @@ -252,7 +253,7 @@ def nf_match_neurons_in_binary_masks(masks_gt, performance['precision'] = TP / (TP + FP) performance['accuracy'] = (TP + TN) / (TP + FP + FN + TN) performance['f1_score'] = 2 * TP / (2 * TP + FP + FN) - logging.debug(performance) + logger.debug(performance) idx_tp = np.where(np.array(costs) < thresh_cost)[0] idx_tp_ben = matches[0][idx_tp] # ground truth @@ -297,8 +298,8 @@ def nf_match_neurons_in_binary_masks(masks_gt, pl.show() pl.axis('off') except Exception as e: - logging.warning("not able to plot precision recall: graphics failure") - logging.warning(e) + logger.warning("not able to plot precision recall: graphics failure") + logger.warning(e) return idx_tp_gt, idx_tp_comp, idx_fn_gt, idx_fp_comp, performance @@ -392,11 +393,7 @@ def register_ROIs(A1, ROIs from session 2 aligned to session 1 """ - - # if 'csc_matrix' not in str(type(A1)): - # A1 = scipy.sparse.csc_matrix(A1) - # if 'csc_matrix' not in str(type(A2)): - # A2 = scipy.sparse.csc_matrix(A2) + logger = logging.getLogger("caiman") if 'ndarray' not in str(type(A1)): A1 = A1.toarray() @@ -488,7 +485,7 @@ def register_ROIs(A1, performance['precision'] = TP / (TP + FP) performance['accuracy'] = (TP + TN) / (TP + FP + FN + TN) performance['f1_score'] = 2 * TP / (2 * TP + FP + FN) - logging.info(performance) + logger.info(performance) if plot_results: if Cn is None: @@ -521,11 +518,6 @@ def register_ROIs(A1, pl.title('Mismatches') pl.axis('off') - -# except Exception as e: -# logging.warning("not able to plot precision recall usually because we are on travis") -# logging.warning(e) - return matched_ROIs1, matched_ROIs2, non_matched1, non_matched2, performance, A2 @@ -586,6 +578,7 @@ def register_multisession(A, by component k in A_union """ + logger = logging.getLogger("caiman") n_sessions = len(A) templates = list(templates) @@ -615,7 +608,7 @@ def register_multisession(A, enclosed_thr=enclosed_thr) mat_sess, mat_un, nm_sess, nm_un, _, A2 = reg_results - logging.info(len(mat_sess)) + logger.info(len(mat_sess)) A_union = A2.copy() A_union[:, mat_un] = A[sess][:, mat_sess] A_union = np.concatenate((A_union.toarray(), A[sess][:, nm_sess]), axis=1) @@ -763,6 +756,7 @@ def distance_masks(M_s:list, cm_s: list[list], max_dist: float, enclosed_thr: Op def find_matches(D_s, print_assignment: bool = False) -> tuple[list, list]: # todo todocument + logger = logging.getLogger("caiman") matches = [] costs = [] @@ -771,7 +765,7 @@ def find_matches(D_s, print_assignment: bool = False) -> tuple[list, list]: # we make a copy not to set changes in the original DD = D.copy() if np.sum(np.where(np.isnan(DD))) > 0: - logging.error('Exception: Distance Matrix contains invalid value NaN') + logger.error('Exception: Distance Matrix contains invalid value NaN') raise Exception('Distance Matrix contains invalid value NaN') # we do the hungarian @@ -784,10 +778,10 @@ def find_matches(D_s, print_assignment: bool = False) -> tuple[list, list]: for row, column in indexes2: value = DD[row, column] if print_assignment: - logging.debug(('(%d, %d) -> %f' % (row, column, value))) + logger.debug(f'({row}, {column}) -> {value}') total.append(value) - logging.debug(('FOV: %d, shape: %d,%d total cost: %f' % (ii, DD.shape[0], DD.shape[1], np.sum(total)))) - logging.debug((time.time() - t_start)) + logger.debug((f'FOV: {ii}, shape: {DD.shape[0]},{DD.shape[1]} total cost: {np.sum(total)}') + logger.debug(time.time() - t_start) costs.append(total) # send back the results in the format we want return matches, costs @@ -818,6 +812,8 @@ def link_neurons(matches: list[list[tuple]], neurons: list of arrays representing the indices of neurons in each FOV """ + logger = logging.getLogger("caiman") + if min_FOV_present is None: min_FOV_present = len(matches) @@ -842,7 +838,7 @@ def link_neurons(matches: list[list[tuple]], neurons.append(neuron) neurons = np.array(neurons).T - logging.info(f'num_neurons: {num_neurons}') + logger.info(f'num_neurons: {num_neurons}') return neurons @@ -917,6 +913,8 @@ def nf_read_roi(fileobj) -> np.ndarray: Adapted from https://gist.github.com/luispedro/3437255 ''' + logger = logging.getLogger("caiman") + # This is based on: # http://rsbweb.nih.gov/ij/developer/source/ij/io/RoiDecoder.java.html # http://rsbweb.nih.gov/ij/developer/source/ij/io/RoiEncoder.java.html @@ -957,8 +955,7 @@ def getfloat(): magic = fileobj.read(4) if magic != 'Iout': - # raise IOError('Magic number not found') - logging.warning('Magic number not found') + logger.warning('Magic number not found') version = get16() # It seems that the roi type field occupies 2 Bytes, but only one is used @@ -967,13 +964,6 @@ def getfloat(): # Discard second Byte: get8() - # if not (0 <= roi_type < 11): - # logging.error(('roireader: ROI type %s not supported' % roi_type)) - # - # if roi_type != 7: - # - # logging.error(('roireader: ROI type %s not supported (!= 7)' % roi_type)) - top = get16() left = get16() bottom = get16() @@ -1050,6 +1040,8 @@ def nf_merge_roi_zip(fnames: list[str], idx_to_keep: list[list], new_fold: str): name of the output zip file (without .zip extension) """ + logger = logging.getLogger("caiman") + folders_rois = [] files_to_keep = [] # unzip the files and keep only the ones that are requested @@ -1058,7 +1050,7 @@ def nf_merge_roi_zip(fnames: list[str], idx_to_keep: list[list], new_fold: str): folders_rois.append(dirpath) with zipfile.ZipFile(fn) as zf: name_rois = zf.namelist() - logging.debug(len(name_rois)) + logger.debug(len(name_rois)) zip_ref = zipfile.ZipFile(fn, 'r') zip_ref.extractall(dirpath) files_to_keep.append([os.path.join(dirpath, ff) for ff in np.array(name_rois)[idx]]) @@ -1109,6 +1101,8 @@ def extract_binary_masks_blob(A, neg_examples: """ + logger = logging.getLogger("caiman") + params = cv2.SimpleBlobDetector_Params() params.minCircularity = minCircularity params.minInertiaRatio = minInertiaRatio @@ -1136,7 +1130,7 @@ def extract_binary_masks_blob(A, neg_examples = [] for count, comp in enumerate(A.tocsc()[:].T): - logging.debug(count) + logger.debug(count) comp_d = np.array(comp.todense()) gray_image = np.reshape(comp_d, dims, order='F') gray_image = (gray_image - np.min(gray_image)) / \ @@ -1161,7 +1155,7 @@ def extract_binary_masks_blob(A, edges = (label_objects == (1 + idx_largest)) edges = scipy.ndimage.binary_fill_holes(edges) else: - logging.warning('empty component') + logger.warning('empty component') edges = np.zeros_like(edges) masks_ws.append(edges) @@ -1265,6 +1259,7 @@ def detect_duplicates_and_subsets(binary_masks, dist_thr: float = 0.1, min_dist=10, thresh_subset: float = 0.8): + logger = logging.getLogger("caiman") cm = [scipy.ndimage.center_of_mass(mm) for mm in binary_masks] sp_rois = scipy.sparse.csc_matrix(np.reshape(binary_masks, (binary_masks.shape[0], -1)).T) @@ -1272,7 +1267,7 @@ def detect_duplicates_and_subsets(binary_masks, np.fill_diagonal(D, 1) overlap = sp_rois.T.dot(sp_rois).toarray() sz = np.array(sp_rois.sum(0)) - logging.info(sz.shape) + logger.info(sz.shape) overlap = overlap / sz.T np.fill_diagonal(overlap, 0) # pairs of duplicate indices @@ -1287,7 +1282,7 @@ def detect_duplicates_and_subsets(binary_masks, metric = r_values.squeeze() else: metric = sz.squeeze() - logging.debug('***** USING MAX AREA BY DEFAULT') + logger.debug('***** USING MAX AREA BY DEFAULT') overlap_tmp = overlap.copy() >= thresh_subset overlap_tmp = overlap_tmp * metric[:, None] diff --git a/caiman/base/timeseries.py b/caiman/base/timeseries.py index 55aa127d5..334b2d786 100644 --- a/caiman/base/timeseries.py +++ b/caiman/base/timeseries.py @@ -173,17 +173,19 @@ def save(self, Exception 'Extension Unknown' """ + logger = logging.getLogger("caiman") + file_name = caiman.paths.fn_relocated(file_name) name, extension = os.path.splitext(file_name)[:2] # name is only used by the memmap saver extension = extension.lower() - logging.debug("Parsing extension " + str(extension)) + logger.debug(f"Parsing extension {extension}") if extension in ['.tif', '.tiff', '.btf']: with tifffile.TiffWriter(file_name, bigtiff=bigtiff, imagej=imagej) as tif: if "%4d%02d%02d" % tuple(map(int, tifffile.__version__.split('.'))) >= '20200813': def foo(i): if i % 200 == 0: - logging.debug(str(i) + ' frames saved') + logger.debug(f'{i} frames saved') curfr = self[i].copy() if to32 and not ('float32' in str(self.dtype)): curfr = curfr.astype(np.float32) @@ -196,7 +198,7 @@ def foo(i): else: for i in range(self.shape[0]): if i % 200 == 0: - logging.debug(str(i) + ' frames saved') + logger.debug(f'{i} frames saved') curfr = self[i].copy() if to32 and not ('float32' in str(self.dtype)): curfr = curfr.astype(np.float32) @@ -295,9 +297,9 @@ def foo(i): try: dset.attrs["file_name"] = [a.encode('utf8') for a in self.file_name] except: - logging.warning('No file saved') + logger.warning('No file saved') if self.meta_data[0] is not None: - logging.debug("Metadata for saved file: " + str(self.meta_data)) + logger.debug("Metadata for saved file: " + str(self.meta_data)) dset.attrs["meta_data"] = cpk.dumps(self.meta_data) return file_name elif extension == '.mmap': @@ -370,7 +372,7 @@ def foo(i): return file_name else: - logging.error("Extension " + str(extension) + " unknown") + logger.error(f"Extension {extension} unknown") raise Exception('Extension Unknown') @@ -382,6 +384,7 @@ def concatenate(*args, **kwargs): mov: XMovie object """ # todo: todocument return + logger = logging.getLogger("caiman") frRef = None for arg in args: @@ -400,6 +403,6 @@ def concatenate(*args, **kwargs): try: return obj.__class__(np.concatenate(*args, **kwargs), **obj.__dict__) except: - logging.debug('no meta information passed') + logger.debug('no meta information passed') return obj.__class__(np.concatenate(*args, **kwargs)) diff --git a/caiman/base/traces.py b/caiman/base/traces.py index 5e9962b79..973f1fca1 100644 --- a/caiman/base/traces.py +++ b/caiman/base/traces.py @@ -58,18 +58,20 @@ def computeDFF(self, window_sec=5, minQuantile=20): ValueError "All traces must be positive" ValueError "The window must be shorter than the total length" """ + logger = logging.getLogger("caiman") + if np.min(self) <= 0: raise ValueError("All traces must be positive") T, _ = self.shape window = int(window_sec * self.fr) - logging.debug(window) + logger.debug(window) if window >= T: raise ValueError("The window must be shorter than the total length") tracesDFF = [] for tr in self.T: - logging.debug(f"TR Shape is {tr.shape}") + logger.debug(f"TR Shape is {tr.shape}") traceBL = [np.percentile(tr[i:i + window], minQuantile) for i in range(1, len(tr) - window)] missing = np.percentile(tr[-window:], minQuantile) missing = np.repeat(missing, window + 1) diff --git a/caiman/cluster.py b/caiman/cluster.py index 323674b27..dde1b336f 100644 --- a/caiman/cluster.py +++ b/caiman/cluster.py @@ -21,9 +21,6 @@ import time from typing import Any, Optional, Union -logger = logging.getLogger(__name__) - - def extract_patch_coordinates(dims: tuple, rf: Union[list, tuple], stride: Union[list[int], tuple], @@ -107,6 +104,7 @@ def start_server(ipcluster: str = "ipcluster", ncpus: int = None) -> None: ipcluster binary file name; requires 4 path separators on Windows. ipcluster="C:\\\\Anaconda3\\\\Scripts\\\\ipcluster.exe" Default: "ipcluster" """ + logger = logging.getLogger("caiman") logger.info("Starting cluster...") if ncpus is None: ncpus = psutil.cpu_count() @@ -142,6 +140,7 @@ def stop_server(ipcluster: str = 'ipcluster', pdir: str = None, profile: str = N dview: Undocumented """ + logger = logging.getLogger("caiman") if 'multiprocessing' in str(type(dview)): dview.terminate() else: @@ -216,6 +215,7 @@ def setup_cluster(backend:str = 'multiprocessing', number of workers in dview. None means single core mode in use. """ + logger = logging.getLogger("caiman") sys.stdout.flush() # XXX Unsure why we do this if n_processes is None: n_processes = np.maximum(int(psutil.cpu_count() - 1), 1) diff --git a/caiman/components_evaluation.py b/caiman/components_evaluation.py index 6b6e353b7..0f0ed295e 100644 --- a/caiman/components_evaluation.py +++ b/caiman/components_evaluation.py @@ -136,12 +136,14 @@ def compute_eccentricity(A, dims, order='F'): def find_activity_intervals(C, Npeaks: int = 5, tB=-3, tA=10, thres: float = 0.3) -> list: # todo todocument + logger = logging.getLogger("caiman") + K, T = np.shape(C) L:list = [] for i in range(K): if np.sum(np.abs(np.diff(C[i, :]))) == 0: L.append([]) - logging.debug('empty component at:' + str(i)) + logger.debug('empty component at:' + str(i)) continue indexes = peakutils.indexes(C[i, :], thres=thres) srt_ind = indexes[np.argsort(C[i, indexes])][::-1] @@ -204,6 +206,7 @@ def classify_components_ep(Y, A, C, b, f, Athresh=0.1, Npeaks=5, tB=-3, tA=10, t significant_samples: list Frames that were used for computing correlation values """ + logger = logging.getLogger("caiman") K, _ = np.shape(C) A = csc_matrix(A) @@ -218,7 +221,7 @@ def classify_components_ep(Y, A, C, b, f, Athresh=0.1, Npeaks=5, tB=-3, tA=10, t significant_samples:list[Any] = [] for i in range(K): if (i + 1) % 200 == 0: # Show status periodically - logging.info('Components evaluated:' + str(i)) + logger.info(f'Components evaluated: {i}') if LOC[i] is not None: atemp = A[:, i].toarray().flatten() atemp[np.isnan(atemp)] = np.nanmean(atemp) @@ -230,13 +233,13 @@ def classify_components_ep(Y, A, C, b, f, Athresh=0.1, Npeaks=5, tB=-3, tA=10, t if len(indexes) == 0: indexes = set(LOC[i]) - logging.warning(f'Component {i} is only active jointly with neighboring components. Space ' + + logger.warning(f'Component {i} is only active jointly with neighboring components. Space ' + 'correlation calculation might be unreliable.') indexes = np.array(list(indexes)).astype(int) px = np.where(atemp > 0)[0] if px.size < 3: - logging.warning(f'Component {i} is almost empty. Space correlation is set to 0.') + logger.warning(f'Component {i} is almost empty. Space correlation is set to 0.') rval[i] = 0 significant_samples.append({0}) else: @@ -264,6 +267,7 @@ def evaluate_components_CNN(A, if isGPU is false, and the environment variable 'CAIMAN_ALLOW_GPU' is not set, then this code will try not to use a GPU. Otherwise it will use one if it finds it. """ + logger = logging.getLogger("caiman") # TODO: Find a less ugly way to do this if not isGPU and 'CAIMAN_ALLOW_GPU' not in os.environ: @@ -273,10 +277,10 @@ def evaluate_components_CNN(A, os.environ["KERAS_BACKEND"] = "tensorflow" from tensorflow.keras.models import model_from_json use_keras = True - logging.info('Using Keras') + logger.info('Using Keras') except (ModuleNotFoundError): use_keras = False - logging.info('Using Tensorflow') + logger.info('Using Tensorflow') if loaded_model is None: if use_keras: @@ -304,7 +308,7 @@ def evaluate_components_CNN(A, print(f"USING MODEL (tensorflow API): {model_file}") loaded_model = caiman.utils.utils.load_graph(model_file) - logging.debug("Loaded model from disk") + logger.debug("Loaded model from disk") half_crop = np.minimum(gSig[0] * 4 + 1, patch_size), np.minimum(gSig[1] * 4 + 1, patch_size) dims = np.array(dims) @@ -406,21 +410,22 @@ def evaluate_components(Y: np.ndarray, significant_samples: ndarray indexes of samples used to obtain the spatial mask by average """ + logger = logging.getLogger("caiman") tB = np.minimum(-2, np.floor(-5. / 30 * final_frate)) tA = np.maximum(5, np.ceil(25. / 30 * final_frate)) - logging.info('tB:' + str(tB) + ',tA:' + str(tA)) + logger.info(f'{tB=},{tA=}') dims, T = np.shape(Y)[:-1], np.shape(Y)[-1] Yr = np.reshape(Y, (np.prod(dims), T), order='F') - logging.debug('Computing event exceptionality delta') + logger.debug('Computing event exceptionality delta') fitness_delta, erfc_delta, _, _ = compute_event_exceptionality(np.diff(traces, axis=1), robust_std=robust_std, N=N, sigma_factor=sigma_factor) - logging.debug('Removing Baseline') + logger.debug('Removing Baseline') if remove_baseline: num_samps_bl = np.minimum(np.shape(traces)[-1]// 5, 800) slow_baseline = False @@ -438,11 +443,11 @@ def evaluate_components(Y: np.ndarray, tr_tmp = np.pad(traces.T, ((padbefore, padafter), (0, 0)), mode='reflect') numFramesNew, num_traces = np.shape(tr_tmp) # compute baseline quickly - logging.debug("binning data ...") + logger.debug("binning data ...") tr_BL = np.reshape(tr_tmp, (downsampfact, numFramesNew // downsampfact, num_traces), order='F') tr_BL = np.percentile(tr_BL, 8, axis=0) - logging.debug("interpolating data ...") - logging.debug(tr_BL.shape) + logger.debug("interpolating data ...") + logger.debug(tr_BL.shape) tr_BL = scipy.ndimage.zoom(np.array(tr_BL, dtype=np.float32), [downsampfact, 1], order=3, mode='constant', @@ -453,13 +458,13 @@ def evaluate_components(Y: np.ndarray, else: traces -= tr_BL[padbefore:-padafter].T - logging.debug('Computing event exceptionality') + logger.debug('Computing event exceptionality') fitness_raw, erfc_raw, _, _ = compute_event_exceptionality(traces, robust_std=robust_std, N=N, sigma_factor=sigma_factor) - logging.debug('Evaluating spatial footprint') + logger.debug('Evaluating spatial footprint') # compute the overlap between spatial and movie average across samples with significant events r_values, significant_samples = classify_components_ep(Yr, A, @@ -750,9 +755,10 @@ def estimate_components_quality(traces, """ # TODO: Consider always returning it all and let the caller ignore what it does not want + logger = logging.getLogger("caiman") if 'memmap' not in str(type(Y)): - logging.warning('NOT MEMORY MAPPED. FALLING BACK ON SINGLE CORE IMPLEMENTATION') + logger.warning('NOT MEMORY MAPPED. FALLING BACK ON SINGLE CORE IMPLEMENTATION') fitness_raw, fitness_delta, erfc_raw, erfc_delta, r_values, _ = \ evaluate_components(Y, traces, A, C, b, f, final_frate, remove_baseline=remove_baseline, N=N, robust_std=robust_std, Athresh=Athresh, @@ -782,7 +788,7 @@ def estimate_components_quality(traces, if dview is None: res = map(evaluate_components_placeholder, params) else: - logging.info('Component evaluation in parallel') + logger.info('Component evaluation in parallel') if 'multiprocessing' in str(type(dview)): res = dview.map_async(evaluate_components_placeholder, params).get(4294967) else: diff --git a/caiman/mmapping.py b/caiman/mmapping.py index dc0f670a6..1f15f7988 100644 --- a/caiman/mmapping.py +++ b/caiman/mmapping.py @@ -45,8 +45,9 @@ def load_memmap(filename: str, mode: str = 'r') -> tuple[Any, tuple, int]: ValueError "Unknown file extension" """ + logger = logging.getLogger("caiman") if pathlib.Path(filename).suffix != '.mmap': - logging.error(f"Unknown extension for file {filename}") + logger.error(f"Unknown extension for file {filename}") raise ValueError(f'Unknown file extension for file {filename} (should be .mmap)') # Strip path components and use CAIMAN_DATA/example_movies # TODO: Eventually get the code to save these in a different dir @@ -174,13 +175,14 @@ def save_memmap_join(mmap_fnames:list[str], base_name: str = None, n_chunks: int add_to_mov: (undocumented) """ + logger = logging.getLogger("caiman") tot_frames = 0 order = 'C' for f in mmap_fnames: cleaner_f = caiman.paths.fn_relocated(f) Yr, dims, T = load_memmap(cleaner_f) - logging.debug(f"save_memmap_join (loading data): {cleaner_f} {T}") + logger.debug(f"save_memmap_join (loading data): {cleaner_f} {T}") tot_frames += T del Yr @@ -193,7 +195,7 @@ def save_memmap_join(mmap_fnames:list[str], base_name: str = None, n_chunks: int fname_tot = caiman.paths.memmap_frames_filename(base_name, dims, tot_frames, order) fname_tot = os.path.join(os.path.split(mmap_fnames[0])[0], fname_tot) fname_tot = caiman.paths.fn_relocated(fname_tot) - logging.info(f"Memmap file for fname_tot: {fname_tot}") + logger.info(f"Memmap file for fname_tot: {fname_tot}") big_mov = np.memmap(fname_tot, mode='w+', dtype=np.float32, shape=prepare_shape((d, tot_frames)), order='C') @@ -220,18 +222,20 @@ def save_memmap_join(mmap_fnames:list[str], base_name: str = None, n_chunks: int np.savez(caiman.paths.fn_relocated(base_name + '.npz'), mmap_fnames=mmap_fnames, fname_tot=fname_tot) - logging.info('Deleting big mov') + logger.info('Deleting big mov') del big_mov sys.stdout.flush() return fname_tot def my_map(dv, func, args) -> list: + logger = logging.getLogger("caiman") + v = dv rc = v.client # scatter 'id', so id=0,1,2 on engines 0,1,2 dv.scatter('id', rc.ids, flatten=True) - logging.debug(dv['id']) + logger.debug(dv['id']) amr = v.map(func, args) pending = set(amr.msg_ids) @@ -248,15 +252,15 @@ def my_map(dv, func, args) -> list: # update pending to exclude those that just finished pending = pending.difference(finished) if counter % 10 == 0: - logging.debug(amr.progress) + logger.debug(amr.progress) for msg_id in finished: # we know these are done, so don't worry about blocking ar = rc.get_result(msg_id) - logging.debug(f"job id {msg_id} finished on engine {ar.engine_id}") # TODO: Abstract out the ugly bits - logging.debug("with stdout:") - logging.debug(' ' + ar.stdout.replace('\n', '\n ').rstrip()) - logging.debug("and errors:") - logging.debug(' ' + ar.stderr.replace('\n', '\n ').rstrip()) + logger.debug(f"job id {msg_id} finished on engine {ar.engine_id}") # TODO: Abstract out the ugly bits + logger.debug("with stdout:") + logger.debug(' ' + ar.stdout.replace('\n', '\n ').rstrip()) + logger.debug("and errors:") + logger.debug(' ' + ar.stderr.replace('\n', '\n ').rstrip()) # note that each job in a map always returns a list of length chunksize # even if chunksize == 1 results_all.update(ar.get_dict()) @@ -269,23 +273,25 @@ def my_map(dv, func, args) -> list: def save_portion(pars) -> int: # todo: todocument + logger = logging.getLogger("caiman") + use_mmap_save = False big_mov_fn, d, tot_frames, fnames, idx_start, idx_end, add_to_mov = pars big_mov_fn = caiman.paths.fn_relocated(big_mov_fn) Ttot = 0 Yr_tot = np.zeros((idx_end - idx_start, tot_frames), dtype=np.float32) - logging.debug(f"Shape of Yr_tot is {Yr_tot.shape}") + logger.debug(f"Shape of Yr_tot is {Yr_tot.shape}") for f in fnames: full_f = caiman.paths.fn_relocated(f) - logging.debug(f"Saving portion to {full_f}") + logger.debug(f"Saving portion to {full_f}") Yr, _, T = load_memmap(full_f) Yr_tot[:, Ttot:Ttot + T] = np.ascontiguousarray(Yr[idx_start:idx_end], dtype=np.float32) + np.float32(add_to_mov) Ttot = Ttot + T del Yr - logging.debug(f"Index start and end are {idx_start} and {idx_end}") + logger.debug(f"Index start and end are {idx_start} and {idx_end}") if use_mmap_save: big_mov = np.memmap(big_mov_fn, mode='r+', dtype=np.float32, shape=prepare_shape((d, tot_frames)), order='C') @@ -299,15 +305,15 @@ def save_portion(pars) -> int: f.write(Yr_tot) computed_position = np.uint64(idx_end * np.uint64(Yr_tot.dtype.itemsize) * tot_frames) if f.tell() != computed_position: - logging.critical(f"Error in mmap portion write: at position {f.tell()}") - logging.critical( + logger.critical(f"Error in mmap portion write: at position {f.tell()}") + logger.critical( f"But should be at position {idx_end} * {Yr_tot.dtype.itemsize} * {tot_frames} = {computed_position}" ) f.close() raise Exception('Internal error in mmapping: Actual position does not match computed position') del Yr_tot - logging.debug('done') + logger.debug('done') return Ttot def save_place_holder(pars:list) -> str: @@ -392,6 +398,8 @@ def save_memmap(filenames:list[str], the name will contain the frame dimensions and the number of frames """ + logger = logging.getLogger("caiman") + if not isinstance(filenames, list): raise Exception('save_memmap: input should be a list of filenames') @@ -409,7 +417,7 @@ def save_memmap(filenames:list[str], or (xy_shifts is not None) or (add_to_movie != 0) or (border_to_0>0)\ or slices is not None: - logging.debug('Distributing memory map over many files') + logger.debug('Distributing memory map over many files') # Here we make a bunch of memmap files in the right order. Same parameters fname_parts = caiman.save_memmap_each(filenames, base_name=base_name, @@ -439,7 +447,7 @@ def save_memmap(filenames:list[str], Ttot = 0 for idx, f in enumerate(filenames): if isinstance(f, str): # Might not always be filenames. - logging.debug(f) + logger.debug(f) if is_3D: Yr = f if not (isinstance(f, str)) else tifffile.imread(f) @@ -512,7 +520,7 @@ def save_memmap(filenames:list[str], big_mov[:, Ttot:Ttot + T] = Yr del big_mov else: - logging.debug('SAVING WITH numpy.tofile()') + logger.debug('SAVING WITH numpy.tofile()') Yr.tofile(fname_tot) else: big_mov = np.memmap(fname_tot, @@ -548,11 +556,12 @@ def parallel_dot_product(A: np.ndarray, b, block_size: int = 5000, dview=None, t b: time x comps """ + logger = logging.getLogger("caiman") pars = [] d1, d2 = np.shape(A) b = pickle.dumps(b) - logging.debug(f'parallel dot product block size: {block_size}') + logger.debug(f'parallel dot product block size: {block_size}') if block_size < d1: for idx in range(0, d1 - block_size, block_size): @@ -567,7 +576,7 @@ def parallel_dot_product(A: np.ndarray, b, block_size: int = 5000, dview=None, t idx_to_pass = list(range(d1)) pars.append([A.filename, idx_to_pass, b, transpose]) - logging.debug('Start product') + logger.debug('Start product') b = pickle.loads(b) if transpose: @@ -578,7 +587,7 @@ def parallel_dot_product(A: np.ndarray, b, block_size: int = 5000, dview=None, t if dview is None: if transpose: # b = pickle.loads(b) - logging.debug('Transposing') + logger.debug('Transposing') for _, pr in enumerate(pars): iddx, rs = dot_place_holder(pr) output = output + rs @@ -595,16 +604,16 @@ def parallel_dot_product(A: np.ndarray, b, block_size: int = 5000, dview=None, t else: results = dview.map_sync(dot_place_holder, pars[itera:itera + num_blocks_per_run]) - logging.debug('Processed:' + str([itera, itera + len(results)])) + logger.debug('Processed:' + str([itera, itera + len(results)])) if transpose: - logging.debug('Transposing') + logger.debug('Transposing') for _, res in enumerate(results): output += res[1] else: - logging.debug('Filling') + logger.debug('Filling') for res in results: output[res[0]] = res[1] @@ -615,12 +624,13 @@ def parallel_dot_product(A: np.ndarray, b, block_size: int = 5000, dview=None, t def dot_place_holder(par:list) -> tuple: # todo: todocument + logger = logging.getLogger("caiman") A_name, idx_to_pass, b_, transpose = par A_, _, _ = load_memmap(A_name) b_ = pickle.loads(b_).astype(np.float32) - logging.debug((idx_to_pass[-1])) + logger.debug((idx_to_pass[-1])) if 'sparse' in str(type(b_)): if transpose: # outp = (b_.tocsr()[idx_to_pass].T.dot( @@ -639,6 +649,7 @@ def dot_place_holder(par:list) -> tuple: def save_tif_to_mmap_online(movie_iterable, save_base_name='YrOL_', order='C', add_to_movie=0, border_to_0=0) -> str: # todo: todocument + logger = logging.getLogger("caiman") if isinstance(movie_iterable, str): # Allow specifying a filename rather than its data rep with tifffile.TiffFile(movie_iterable) as tf: # And load it if that happens @@ -659,7 +670,7 @@ def save_tif_to_mmap_online(movie_iterable, save_base_name='YrOL_', order='C', a for page in movie_iterable: if count % 100 == 0: - logging.debug(count) + logger.debug(count) if 'tifffile' in str(type(movie_iterable[0])): page = page.asarray() diff --git a/caiman/motion_correction.py b/caiman/motion_correction.py index 6ccbe570e..912cd0bea 100644 --- a/caiman/motion_correction.py +++ b/caiman/motion_correction.py @@ -45,11 +45,13 @@ import numpy as np from numpy.fft import ifftshift import os +import scipy +from skimage.transform import resize as resize_sk +from skimage.transform import warp as warp_sk import sys import tifffile +from tqdm import tqdm from typing import Optional -from skimage.transform import resize as resize_sk -from skimage.transform import warp as warp_sk import caiman import caiman.base.movies @@ -166,11 +168,12 @@ def __init__(self, fname, min_mov=None, dview=None, max_shifts=(6, 6), niter_rig self """ + logger = logging.getLogger("caiman") if 'ndarray' in str(type(fname)) or isinstance(fname, caiman.base.movies.movie): mc_tempfile = caiman.paths.fn_relocated('tmp_mov_mot_corr.hdf5') if os.path.isfile(mc_tempfile): os.remove(mc_tempfile) - logging.info(f"Creating file for motion correction: {mc_tempfile}") + logger.info(f"Creating file for motion correction: {mc_tempfile}") caiman.movie(fname).save(mc_tempfile) fname = [mc_tempfile] @@ -202,7 +205,7 @@ def __init__(self, fname, min_mov=None, dview=None, max_shifts=(6, 6), niter_rig self.is3D = bool(is3D) self.indices = indices if self.use_cuda and not HAS_CUDA: - logging.debug("pycuda is unavailable. Falling back to default FFT.") + logger.debug("pycuda is unavailable. Falling back to default FFT.") def motion_correct(self, template=None, save_movie=False): """general function for performing all types of motion correction. The @@ -277,8 +280,10 @@ def motion_correct_rigid(self, template=None, save_movie=False) -> None: self.shifts_rig: shifts in x and y (and z if 3D) per frame """ - logging.debug('Entering Rigid Motion Correction') - logging.debug(-self.min_mov) # XXX why the minus? + logger = logging.getLogger("caiman") + + logger.debug('Entering Rigid Motion Correction') + logger.debug(f"{self.min_mov=}") self.total_template_rig = template self.templates_rig:list = [] self.fname_tot_rig:list = [] @@ -336,10 +341,11 @@ def motion_correct_pwrigid(self, save_movie:bool=True, template:np.ndarray=None, Raises: Exception: 'Error: Template contains NaNs, Please review the parameters' """ + logger = logging.getLogger("caiman") num_iter = 1 if template is None: - logging.info('Generating template by rigid motion correction') + logger.info('Generating template by rigid motion correction') self.motion_correct_rigid() self.total_template_els = self.total_template_rig.copy() else: @@ -415,6 +421,7 @@ def apply_shifts_movie(self, fname, rigid_shifts:bool=None, save_memmap:bool=Fal m_reg: caiman movie object caiman movie object with applied shifts (not memory mapped) """ + logger = logging.getLogger("caiman") Y = caiman.load(fname).astype(np.float32) if remove_min: @@ -423,7 +430,7 @@ def apply_shifts_movie(self, fname, rigid_shifts:bool=None, save_memmap:bool=Fal Y -= Y.min() if rigid_shifts is not None: - logging.warning('The rigid_shifts flag is deprecated and it is ' + + logger.warning('The rigid_shifts flag is deprecated and it is ' + 'being ignored. The value is read directly from' + ' mc.pw_rigid and is currently set to the opposite' + f' of {self.pw_rigid}') @@ -750,6 +757,7 @@ def motion_correct_oneP_nonrigid( return mc def motion_correct_online_multifile(list_files, add_to_movie, order='C', **kwargs): + logger = logging.getLogger("caiman") # todo todocument kwargs['order'] = order @@ -762,7 +770,7 @@ def motion_correct_online_multifile(list_files, add_to_movie, order='C', **kwarg kwargs_['order'] = order total_frames = 0 for file_ in list_files: - logging.info(('Processing:' + file_)) + logger.info('Processing: {file_}') kwargs_['template'] = template kwargs_['save_base_name'] = os.path.splitext(file_)[0] tffl = tifffile.TiffFile(file_) @@ -781,6 +789,7 @@ def motion_correct_online(movie_iterable, add_to_movie, max_shift_w=25, max_shif border_to_0=0, n_iter=1, remove_blanks=False, show_template=False, return_mov=False, use_median_as_template=False): # todo todocument + logger = logging.getLogger("caiman") shifts = [] # store the amount of shift in each frame xcorrs = [] @@ -790,7 +799,7 @@ def motion_correct_online(movie_iterable, add_to_movie, max_shift_w=25, max_shif if 'tifffile' in str(type(movie_iterable[0])): if len(movie_iterable) == 1: - logging.warning( + logger.warning( '******** WARNING ****** NEED TO LOAD IN MEMORY SINCE SHAPE OF PAGE IS THE FULL MOVIE') movie_iterable = movie_iterable.asarray() init_mov = movie_iterable[:init_frames_template] @@ -801,7 +810,7 @@ def motion_correct_online(movie_iterable, add_to_movie, max_shift_w=25, max_shif init_mov = movie_iterable[slice(0, init_frames_template, 1)] dims = (len(movie_iterable),) + movie_iterable[0].shape # TODO: Refactor so length is either tracked separately or is last part of tuple - logging.debug("dimensions:" + str(dims)) + logger.debug("dimensions:" + str(dims)) if use_median_as_template: template = bin_median(movie_iterable) @@ -885,9 +894,9 @@ def motion_correct_online(movie_iterable, add_to_movie, max_shift_w=25, max_shif vmax=350, interpolation='none') plt.pause(.001) - logging.debug('Relative change in template:' + str( + logger.debug('Relative change in template:' + str( np.sum(np.abs(template - template_old)) / np.sum(np.abs(template)))) - logging.debug('Iteration:' + str(count)) + logger.debug('Iteration:' + str(count)) if border_to_0 > 0: new_img[:border_to_0, :] = min_mov @@ -916,7 +925,7 @@ def motion_correct_online(movie_iterable, add_to_movie, max_shift_w=25, max_shif if show_movie: cv2.imshow('frame', new_img / 500) - logging.info(shift) + logger.info(shift) if not np.any(np.remainder(shift, 1) == (0, 0)): cv2.waitKey(int(1. / 500 * 1000)) @@ -925,7 +934,7 @@ def motion_correct_online(movie_iterable, add_to_movie, max_shift_w=25, max_shif xcorrs.append(xcorr_tmp) if save_base_name is not None: - logging.debug('Flushing memory') + logger.debug('Flushing memory') big_mov.flush() # type: ignore # mypy cannot prove big_mov is not still None del big_mov gc.collect() @@ -1087,6 +1096,7 @@ def bin_median_3d(mat, window=10, exclude_nans=True): def process_movie_parallel(arg_in): #todo: todocument + logger = logging.getLogger("caiman") fname, fr, margins_out, template, max_shift_w, max_shift_h, remove_blanks, apply_smooth, save_hdf5 = arg_in if template is not None: @@ -1098,7 +1108,6 @@ def process_movie_parallel(arg_in): type_input = str(type(fname)) if 'movie' in type_input: - # logging.info((type(fname))) Yr = fname elif 'ndarray' in type_input: @@ -1109,40 +1118,30 @@ def process_movie_parallel(arg_in): raise Exception('Unknown input type:' + type_input) if Yr.ndim > 1: - # logging.info('loaded') if apply_smooth: - # logging.info('applying smoothing') Yr = Yr.bilateral_blur_2D( diameter=10, sigmaColor=10000, sigmaSpace=0) -# print('Remove BL') if margins_out != 0: Yr = Yr[:, margins_out:-margins_out, margins_out:- margins_out] # borders create troubles -# logging.info('motion correcting') - Yr, shifts, xcorrs, template = Yr.motion_correct(max_shift_w=max_shift_w, max_shift_h=max_shift_h, method='opencv', template=template, remove_blanks=remove_blanks) if ('movie' in type_input) or ('ndarray' in type_input): - # logging.debug('Returning Values') return Yr, shifts, xcorrs, template else: - # logging.debug('median computing') + # logger.debug('median computing') template = Yr.bin_median() -# logging.debug('saving') idx_dot = len(fname.split('.')[-1]) if save_hdf5: Yr.save(fname[:-idx_dot] + 'hdf5') -# logging.debug('saving 2') np.savez(fname[:-idx_dot] + 'npz', shifts=shifts, xcorrs=xcorrs, template=template) -# logging.debug('deleting') del Yr -# logging.debug('done!') return fname[:-idx_dot] else: return None @@ -1167,6 +1166,7 @@ def motion_correct_parallel(file_names, fr=10, template=None, margins_out=0, Raises: Exception """ + logger = logging.getLogger("caiman") args_in = [] for file_idx, f in enumerate(file_names): if isinstance(template, list): @@ -1193,7 +1193,7 @@ def motion_correct_parallel(file_names, fr=10, template=None, margins_out=0, dview.results.clear() except UnboundLocalError: - logging.error('could not close client') + logger.error('could not close client') raise @@ -2123,7 +2123,8 @@ def tile_and_correct(img, template, strides, overlaps, max_shifts, newoverlaps=N """ - logging.debug("Starting tile and correct") + logger = logging.getLogger("caiman") + logger.debug("Starting tile and correct") img = img.astype(np.float64).copy() template = template.astype(np.float64).copy() @@ -2160,7 +2161,7 @@ def tile_and_correct(img, template, strides, overlaps, max_shifts, newoverlaps=N return new_img - add_to_movie, (-rigid_shts[0], -rigid_shts[1]), None, None else: # extract patches - logging.info("Extracting patches") + logger.info("Extracting patches") templates = [ it[-1] for it in sliding_window(template, overlaps=overlaps, strides=strides)] xy_grid = [(it[0], it[1]) for it in sliding_window( @@ -2183,7 +2184,7 @@ def tile_and_correct(img, template, strides, overlaps, max_shifts, newoverlaps=N ub_shifts = None # extract shifts for each patch - logging.info("extracting shifts for each patch") + logger.info("extracting shifts for each patch") shfts_et_all = [register_translation( a, b, c, shifts_lb=lb_shifts, shifts_ub=ub_shifts, max_shifts=max_shifts, use_cuda=use_cuda) for a, b, c in zip( imgs, templates, [upsample_factor_fft] * num_tiles)] @@ -2594,9 +2595,7 @@ def compute_metrics_motion_correction(fname, final_size_x, final_size_y, swap_di opencv=True, resize_fact_play=3, fr_play=30, max_flow=1, gSig_filt=None): #todo: todocument - # cv2.OPTFLOW_FARNEBACK_GAUSSIAN - import scipy - from tqdm import tqdm + logger = logging.getLogger("caiman") if os.environ.get('ENABLE_TQDM') == 'True': disable_tqdm = False else: @@ -2619,40 +2618,40 @@ def compute_metrics_motion_correction(fname, final_size_x, final_size_y, swap_di if max_shft_y_1 == 0: max_shft_y_1 = None - logging.info([max_shft_x, max_shft_x_1, max_shft_y, max_shft_y_1]) + logger.info([max_shft_x, max_shft_x_1, max_shft_y, max_shft_y_1]) m = m[:, max_shft_x:max_shft_x_1, max_shft_y:max_shft_y_1] if np.sum(np.isnan(m)) > 0: - logging.info(m.shape) - logging.warning('Movie contains NaN') + logger.info(m.shape) + logger.warning('Movie contains NaN') raise Exception('Movie contains NaN') - logging.debug('Local correlations..') + logger.debug('Local correlations..') img_corr = m.local_correlations(eight_neighbours=True, swap_dim=swap_dim) - logging.debug(m.shape) + logger.debug(m.shape) if template is None: tmpl = caiman.motion_correction.bin_median(m) else: tmpl = template - logging.debug('Compute Smoothness.. ') + logger.debug('Compute Smoothness.. ') smoothness = np.sqrt( np.sum(np.sum(np.array(np.gradient(np.mean(m, 0)))**2, 0))) smoothness_corr = np.sqrt( np.sum(np.sum(np.array(np.gradient(img_corr))**2, 0))) - logging.debug('Compute correlations.. ') + logger.debug('Computing correlations.. ') correlations = [] count = 0 sys.stdout.flush() for fr in tqdm(m, desc="Correlations", disable=disable_tqdm): if disable_tqdm: if count % 100 == 0: - logging.debug(count) + logger.debug(count) count += 1 correlations.append(scipy.stats.pearsonr( fr.flatten(), tmpl.flatten())[0]) - logging.info('Compute optical flow .. ') + logger.info('Computing optical flow.. ') m = m.resize(1, 1, resize_fact_flow) norms = [] @@ -2662,7 +2661,7 @@ def compute_metrics_motion_correction(fname, final_size_x, final_size_y, swap_di for fr in tqdm(m, desc="Optical flow", disable=disable_tqdm): if disable_tqdm: if count % 100 == 0: - logging.debug(count) + logger.debug(count) count += 1 @@ -2781,6 +2780,7 @@ def motion_correct_batch_rigid(fname, max_shifts, dview=None, splits=56, num_spl Exception 'The movie contains nans. Nans are not allowed!' """ + logger = logging.getLogger("caiman") dims, T = caiman.base.movies.get_file_size(fname, var_name_hdf5=var_name_hdf5) Ts = np.arange(T)[subidx].shape[0] @@ -2791,9 +2791,9 @@ def motion_correct_batch_rigid(fname, max_shifts, dview=None, splits=56, num_spl if len(m.shape) < 3: m = caiman.load(fname, var_name_hdf5=var_name_hdf5) m = m[corrected_slicer] - logging.warning("Your original file was saved as a single page " + - "file. Consider saving it in multiple smaller files" + - "with size smaller than 4GB (if it is a .tif file)") + logger.warning("Your original file was saved as a single page " + + "file. Consider saving it in multiple smaller files" + + "with size smaller than 4GB (if it is a .tif file)") if is3D: m = m[:, indices[0], indices[1], indices[2]] @@ -2820,20 +2820,20 @@ def motion_correct_batch_rigid(fname, max_shifts, dview=None, splits=56, num_spl add_to_movie = -np.min(template) if np.isnan(add_to_movie): - logging.error('The movie contains NaNs. NaNs are not allowed!') + logger.error('The movie contains NaNs. NaNs are not allowed!') raise Exception('The movie contains NaNs. NaNs are not allowed!') else: - logging.debug('Adding to movie ' + str(add_to_movie)) + logger.debug('Adding to movie ' + str(add_to_movie)) save_movie = False fname_tot_rig = None res_rig:list = [] for iter_ in range(num_iter): - logging.debug(iter_) + logger.debug(iter_) old_templ = new_templ.copy() if iter_ == num_iter - 1: save_movie = save_movie_rigid - logging.debug('saving!') + logger.debug('saving!') if isinstance(fname, tuple): @@ -2854,8 +2854,6 @@ def motion_correct_batch_rigid(fname, max_shifts, dview=None, splits=56, num_spl if gSig_filt is not None: new_templ = high_pass_filter_space(new_templ, gSig_filt) -# logging.debug((np.linalg.norm(new_templ - old_templ) / np.linalg.norm(old_templ))) - total_template = new_templ templates = [] shifts:list = [] @@ -2936,6 +2934,8 @@ def motion_correct_batch_pwrigid(fname, max_shifts, strides, overlaps, add_to_mo Exception 'You need to initialize the template with a good estimate. See the motion' '_correct_batch_rigid function' """ + logger = logging.getLogger("caiman") + if template is None: raise Exception('You need to initialize the template with a good estimate. See the motion' '_correct_batch_rigid function') @@ -2943,13 +2943,13 @@ def motion_correct_batch_pwrigid(fname, max_shifts, strides, overlaps, add_to_mo new_templ = template if np.isnan(add_to_movie): - logging.error('The template contains NaNs. NaNs are not allowed!') + logger.error('The template contains NaNs. NaNs are not allowed!') raise Exception('The template contains NaNs. NaNs are not allowed!') else: - logging.debug('Adding to movie ' + str(add_to_movie)) + logger.debug(f'Adding to movie {add_to_movie}')) for iter_ in range(num_iter): - logging.debug(iter_) + logger.debug(iter_) old_templ = new_templ.copy() if iter_ == num_iter - 1: @@ -2957,9 +2957,9 @@ def motion_correct_batch_pwrigid(fname, max_shifts, strides, overlaps, add_to_mo if save_movie: if isinstance(fname, tuple): - logging.debug(f'saving mmap of {fname[0]} to {fname[-1]}') + logger.debug(f'saving mmap of {fname[0]} to {fname[-1]}') else: - logging.debug(f'saving mmap of {fname}') + logger.debug(f'saving mmap of {fname}') if isinstance(fname, tuple): base_name=os.path.splitext(os.path.split(fname[0])[-1])[0] + '_els_' @@ -3019,6 +3019,7 @@ def tile_and_correct_wrapper(params): """ # todo todocument + logger = logging.getLogger("caiman") try: @@ -3046,7 +3047,7 @@ def tile_and_correct_wrapper(params): template = template[indices] for count, img in enumerate(imgs): if count % 10 == 0: - logging.debug(count) + logger.debug(count) if is3D: mc[count], total_shift, start_step, xyz_grid = tile_and_correct_3d(img, template, strides, overlaps, max_shifts, add_to_movie=add_to_movie, newoverlaps=newoverlaps, @@ -3092,6 +3093,7 @@ def motion_correction_piecewise(fname, splits, strides, overlaps, add_to_movie=0 """ # todo todocument + logger = logging.getLogger("caiman") if isinstance(fname, tuple): name, extension = os.path.splitext(fname[0])[:2] else: @@ -3102,7 +3104,7 @@ def motion_correction_piecewise(fname, splits, strides, overlaps, add_to_movie=0 dims, T = caiman.base.movies.get_file_size(fname, var_name_hdf5=var_name_hdf5) z = np.zeros(dims) dims = z[indices].shape - logging.debug(f'Number of Splits: {splits}') + logger.debug(f'Number of Splits: {splits}') if isinstance(splits, int): if subidx is None: rng = range(T) @@ -3121,7 +3123,7 @@ def motion_correction_piecewise(fname, splits, strides, overlaps, add_to_movie=0 if num_splits is not None: idxs = np.array(idxs)[np.random.randint(0, len(idxs), num_splits)] save_movie = False - #logging.warning('**** MOVIE NOT SAVED BECAUSE num_splits is not None ****') + logger.warning('**** MOVIE NOT SAVED BECAUSE num_splits is not None ****') if save_movie: if base_name is None: @@ -3131,29 +3133,29 @@ def motion_correction_piecewise(fname, splits, strides, overlaps, add_to_movie=0 np.memmap(fname_tot, mode='w+', dtype=np.float32, shape=caiman.mmapping.prepare_shape(shape_mov), order=order) - logging.info(f'Saving file as {fname_tot}') + logger.info(f'Saving file as {fname_tot}') else: fname_tot = None pars = [] for idx in idxs: - logging.debug(f'Extracting parameters for frames: {idx}') + logger.debug(f'Extracting parameters for frames: {idx}') pars.append([fname, fname_tot, idx, shape_mov, template, strides, overlaps, max_shifts, np.array( add_to_movie, dtype=np.float32), max_deviation_rigid, upsample_factor_grid, newoverlaps, newstrides, shifts_opencv, nonneg_movie, gSig_filt, is_fiji, use_cuda, border_nan, var_name_hdf5, is3D, indices]) if dview is not None: - logging.info('** Starting parallel motion correction **') + logger.info('** Starting parallel motion correction **') if HAS_CUDA and use_cuda: res = dview.map(tile_and_correct_wrapper,pars) dview.map(close_cuda_process, range(len(pars))) elif 'multiprocessing' in str(type(dview)): - logging.debug("entering multiprocessing tile_and_correct_wrapper") + logger.debug("entering multiprocessing tile_and_correct_wrapper") res = dview.map_async(tile_and_correct_wrapper, pars).get(4294967) else: res = dview.map_sync(tile_and_correct_wrapper, pars) - logging.info('** Finished parallel motion correction **') + logger.info('** Finished parallel motion correction **') else: res = list(map(tile_and_correct_wrapper, pars)) diff --git a/caiman/paths.py b/caiman/paths.py index 91dc1d0bf..95150394d 100644 --- a/caiman/paths.py +++ b/caiman/paths.py @@ -34,14 +34,16 @@ def get_tempdir() -> str: # If unset, uses default of a temp folder under caiman_datadir() # To get the old "store it where I am" behaviour, set CAIMAN_TEMP to a single dot. # If you prefer to store it somewhere different, provide a full path to that location. + logger = logging.getLogger("caiman") + if 'CAIMAN_TEMP' in os.environ: if os.path.isdir(os.environ['CAIMAN_TEMP']): return os.environ['CAIMAN_TEMP'] else: - logging.warning(f"CAIMAN_TEMP is set to nonexistent directory {os.environ['CAIMAN_TEMP']}. Ignoring") + logger.warning(f"CAIMAN_TEMP is set to nonexistent directory {os.environ['CAIMAN_TEMP']}. Ignoring") temp_under_data = os.path.join(caiman_datadir(), "temp") if not os.path.isdir(temp_under_data): - logging.warning(f"Default temporary dir {temp_under_data} does not exist, creating") + logger.warning(f"Default temporary dir {temp_under_data} does not exist, creating") os.makedirs(temp_under_data) return temp_under_data diff --git a/caiman/source_extraction/cnmf/cnmf.py b/caiman/source_extraction/cnmf/cnmf.py index b58e2e773..4249e8f3d 100644 --- a/caiman/source_extraction/cnmf/cnmf.py +++ b/caiman/source_extraction/cnmf/cnmf.py @@ -310,6 +310,7 @@ def fit_file(self, motion_correct=False, indices=None, include_eval=False): Returns: cnmf object with the current estimates """ + logger = logging.getLogger("caiman") if indices is None: indices = (slice(None), slice(None)) fnames = self.params.get('data', 'fnames') @@ -317,7 +318,7 @@ def fit_file(self, motion_correct=False, indices=None, include_eval=False): _, extension = os.path.splitext(fnames[0])[:2] extension = extension.lower() else: - logging.warning("Error: File not found, with file list:\n" + fnames[0]) + logger.error(f"Error: File not found, with file list:\n{fnames[0]}") raise Exception('File not found!') base_name = pathlib.Path(fnames[0]).stem + "_memmap_" @@ -419,6 +420,7 @@ def fit(self, images, indices=(slice(None), slice(None))): http://www.cell.com/neuron/fulltext/S0896-6273(15)01084-3 """ + logger = logging.getLogger("caiman") # Todo : to compartment if isinstance(indices, slice): indices = [indices] @@ -433,7 +435,7 @@ def fit(self, images, indices=(slice(None), slice(None))): if self.params.get('patch', 'rf') is None and (is_sliced or 'ndarray' in str(type(images))): images = images[tuple(indices)] self.dview = None - logging.info("Parallel processing in a single patch " + logger.info("Parallel processing in a single patch " "is not available for loaded in memory or sliced" + " data.") @@ -446,7 +448,7 @@ def fit(self, images, indices=(slice(None), slice(None))): if np.isfortran(Yr): raise Exception('The file is in F order, it should be in C order (see save_memmap function)') - logging.info((T,) + self.dims) + logger.info((T,) + self.dims) # Make sure filename is pointed correctly (numpy sets it to None sometimes) try: @@ -463,7 +465,7 @@ def fit(self, images, indices=(slice(None), slice(None))): # 'ss': np.ones((3,) * len(self.dims), dtype=np.uint8) # }) - logging.info(('Using ' + str(self.params.get('patch', 'n_processes')) + ' processes')) + logger.info(('Using ' + str(self.params.get('patch', 'n_processes')) + ' processes')) if self.params.get('preprocess', 'n_pixels_per_process') is None: avail_memory_per_process = psutil.virtual_memory()[ 1] / 2.**30 / self.params.get('patch', 'n_processes') @@ -474,14 +476,14 @@ def fit(self, images, indices=(slice(None), slice(None))): self.params.set('spatial', {'n_pixels_per_process': self.params.get('preprocess', 'n_pixels_per_process')}) - logging.info('using ' + str(self.params.get('preprocess', 'n_pixels_per_process')) + ' pixels per process') - logging.info('using ' + str(self.params.get('temporal', 'block_size_temp')) + ' block_size_temp') + logger.info('using ' + str(self.params.get('preprocess', 'n_pixels_per_process')) + ' pixels per process') + logger.info('using ' + str(self.params.get('temporal', 'block_size_temp')) + ' block_size_temp') if self.params.get('patch', 'rf') is None: # no patches - logging.info('preprocessing ...') + logger.info('preprocessing ...') Yr = self.preprocess(Yr) if self.estimates.A is None: - logging.info('initializing ...') + logger.info('initializing ...') self.initialize(Y) if self.params.get('patch', 'only_init'): # only return values after initialization @@ -494,21 +496,21 @@ def fit(self, images, indices=(slice(None), slice(None))): if self.remove_very_bad_comps: - logging.info('removing bad components : ') + logger.info('removing bad components : ') final_frate = 10 r_values_min = 0.5 # threshold on space consistency fitness_min = -15 # threshold on time variability fitness_delta_min = -15 Npeaks = 10 traces = np.array(self.C) - logging.info('estimating the quality...') + logger.info('estimating the quality...') idx_components, idx_components_bad, fitness_raw,\ fitness_delta, r_values = estimate_components_quality( traces, Y, self.estimates.A, self.estimates.C, self.estimates.b, self.estimates.f, final_frate=final_frate, Npeaks=Npeaks, r_values_min=r_values_min, fitness_min=fitness_min, fitness_delta_min=fitness_delta_min, return_all=True, N=5) - logging.info(('Keeping ' + str(len(idx_components)) + + logger.info(('Keeping ' + str(len(idx_components)) + ' and discarding ' + str(len(idx_components_bad)))) self.estimates.C = self.estimates.C[idx_components] self.estimates.A = self.estimates.A[:, idx_components] # type: ignore # not provable that self.initialise provides a value @@ -518,31 +520,31 @@ def fit(self, images, indices=(slice(None), slice(None))): return self - logging.info('update spatial ...') + logger.info('update spatial ...') self.update_spatial(Yr, use_init=True) - logging.info('update temporal ...') + logger.info('update temporal ...') if not self.skip_refinement: # set this to zero for fast updating without deconvolution self.params.set('temporal', {'p': 0}) else: self.params.set('temporal', {'p': self.params.get('preprocess', 'p')}) - logging.info('deconvolution ...') + logger.info('deconvolution ...') self.update_temporal(Yr) if not self.skip_refinement: - logging.info('refinement...') + logger.info('refinement...') if self.params.get('merging', 'do_merge'): - logging.info('merging components ...') + logger.info('merging components ...') self.merge_comps(Yr, mx=50, fast_merge=True) - logging.info('Updating spatial ...') + logger.info('Updating spatial ...') self.update_spatial(Yr, use_init=False) # set it back to original value to perform full deconvolution self.params.set('temporal', {'p': self.params.get('preprocess', 'p')}) - logging.info('update temporal ...') + logger.info('update temporal ...') self.update_temporal(Yr, use_init=False) # else: # todo : ask for those.. @@ -568,7 +570,7 @@ def fit(self, images, indices=(slice(None), slice(None))): else: # use patches if self.params.get('patch', 'stride') is None: self.params.set('patch', {'stride': int(self.params.get('patch', 'rf') * 2 * .1)}) - logging.info( + logger.info( ('Setting the stride to 10% of 2*rf automatically:' + str(self.params.get('patch', 'stride')))) if not isinstance(images, np.memmap): @@ -585,7 +587,7 @@ def fit(self, images, indices=(slice(None), slice(None))): indices=indices) self.estimates.bl, self.estimates.c1, self.estimates.g, self.estimates.neurons_sn = None, None, None, None - logging.info("merging") + logger.info("merging") self.estimates.merged_ROIs = [0] @@ -595,14 +597,14 @@ def fit(self, images, indices=(slice(None), slice(None))): while len(self.estimates.merged_ROIs) > 0: self.merge_comps(Yr, mx=np.Inf, fast_merge=True) - logging.info("update temporal") + logger.info("update temporal") self.update_temporal(Yr, use_init=False) self.params.set('spatial', {'se': np.ones((1,) * len(self.dims), dtype=np.uint8)}) - logging.info('update spatial ...') + logger.info('update spatial ...') self.update_spatial(Yr, use_init=False) - logging.info("update temporal") + logger.info("update temporal") self.update_temporal(Yr, use_init=False) else: while len(self.estimates.merged_ROIs) > 0: @@ -627,7 +629,7 @@ def fit(self, images, indices=(slice(None), slice(None))): while len(self.estimates.merged_ROIs) > 0: self.merge_comps(Yr, mx=np.Inf) - logging.info("update temporal") + logger.info("update temporal") self.update_temporal(Yr, use_init=False) self.estimates.normalize_components() diff --git a/caiman/source_extraction/cnmf/estimates.py b/caiman/source_extraction/cnmf/estimates.py index 1959a2e05..d32a1ce23 100644 --- a/caiman/source_extraction/cnmf/estimates.py +++ b/caiman/source_extraction/cnmf/estimates.py @@ -105,8 +105,9 @@ def __init__(self, A=None, b=None, C=None, f=None, R=None, dims=None): eccentricity values """ # Sanity checks (right now these just warn, but eventually we would like to fail) + logger = logging.getLogger("caiman") if R is not None and not isinstance(R, np.ndarray): - logging.warning(f"Estimates.R should be an np.ndarray but was assigned a {type(R)}") + logger.warning(f"Estimates.R should be an np.ndarray but was assigned a {type(R)}") # variables related to the estimates of traces, footprints, deconvolution and background self.A = A @@ -719,7 +720,8 @@ def compute_background(self, Yr): Yr : np.ndarray movie in format pixels (d) x frames (T) """ - logging.warning("Computing the full background has big memory requirements!") + logger = logging.getLogger("caiman") + logger.warning("Computing the full background has big memory requirements!") if self.f is not None: # low rank background return self.b.dot(self.f) else: # ring model background @@ -802,10 +804,11 @@ def detrend_df_f(self, quantileMin=8, frames_window=500, self: CNMF object self.F_dff contains the DF/F normalized traces """ + logger = logging.getLogger("caiman") # FIXME This method shares its name with a function elsewhere in the codebase (which it wraps) if self.C is None or self.C.shape[0] == 0: - logging.warning("There are no components for DF/F extraction!") + logger.warning("There are no components for DF/F extraction!") return self if use_residuals: @@ -947,6 +950,7 @@ def select_components(self, idx_components=None, use_object=False, save_discarde def restore_discarded_components(self): ''' Recover components that are filtered out with the select_components method ''' + logger = logging.getLogger("caiman") if self.discarded_components is not None: for field in ['C', 'S', 'YrA', 'R', 'F_dff', 'g', 'bl', 'c1', 'neurons_sn', 'lam', 'cnn_preds','SNR_comp','r_values','coordinates']: if getattr(self, field) is not None: @@ -956,7 +960,7 @@ def restore_discarded_components(self): setattr(self, field, np.concatenate([getattr(self, field), getattr(self.discarded_components, field)], axis=0)) setattr(self.discarded_components, field, None) else: - logging.warning('Variable ' + field + ' could not be \ + logger.warning('Variable ' + field + ' could not be \ restored as it does not have the same \ number of components as A') @@ -1034,6 +1038,7 @@ def evaluate_components(self, imgs, params, dview=None): self.cnn_preds: np.array CNN classifier values for each component """ + logger = logging.getLogger("caiman") dims = imgs.shape[1:] opts = params.get_group('quality') idx_components, idx_components_bad, SNR_comp, r_values, cnn_preds = \ @@ -1052,11 +1057,11 @@ def evaluate_components(self, imgs, params, dview=None): self.idx_components = idx_components.astype(int) self.idx_components_bad = idx_components_bad.astype(int) if np.any(np.isnan(r_values)): - logging.warning('NaN values detected for space correlation in {}'.format(np.where(np.isnan(r_values))[0]) + + logger.warning('NaN values detected for space correlation in {}'.format(np.where(np.isnan(r_values))[0]) + '. Changing their value to -1.') r_values = np.where(np.isnan(r_values), -1, r_values) if np.any(np.isnan(SNR_comp)): - logging.warning('NaN values detected for trace SNR in {}'.format(np.where(np.isnan(SNR_comp))[0]) + + logger.warning('NaN values detected for trace SNR in {}'.format(np.where(np.isnan(SNR_comp))[0]) + '. Changing their value to 0.') SNR_comp = np.where(np.isnan(SNR_comp), 0, SNR_comp) self.SNR_comp = SNR_comp @@ -1176,7 +1181,7 @@ def deconvolve(self, params, dview=None, dff_flag=False): Returns: self: estimates object ''' - + logger = logging.getLogger("caiman") F = self.C + self.YrA args = dict() args['p'] = params.get('preprocess', 'p') @@ -1213,7 +1218,7 @@ def deconvolve(self, params, dview=None, dff_flag=False): if dff_flag: if self.F_dff is None: - logging.warning('The F_dff field is empty. Run the method' + + logger.warning('The F_dff field is empty. Run the method' + ' estimates.detrend_df_f before attempting' + ' to deconvolve.') else: @@ -1272,6 +1277,7 @@ def manual_merge(self, components, params): Returns: self: estimates object ''' + logger = logging.getLogger("caiman") ln = np.sum(np.array([len(comp) for comp in components])) ids = set.union(*[set(comp) for comp in components]) @@ -1295,7 +1301,7 @@ def manual_merge(self, components, params): for i in range(nbmrg): merged_ROI = list(set(components[i])) - logging.info(f'Merging components {merged_ROI}') + logger.info(f'Merging components {merged_ROI}') merged_ROIs.append(merged_ROI) Acsc = self.A.tocsc()[:, merged_ROI] @@ -1446,6 +1452,7 @@ def remove_duplicates(self, predictions=None, r_values=None, dist_thr=0.1, thresh_subset plot_duplicates ''' + logger = logging.getLogger("caiman") if self.A_thr is None: raise Exception('You need to compute thresholded components before calling remove_duplicates: use the threshold_components method') @@ -1454,7 +1461,7 @@ def remove_duplicates(self, predictions=None, r_values=None, dist_thr=0.1, duplicates_gt, indices_keep_gt, indices_remove_gt, D_gt, overlap_gt = detect_duplicates_and_subsets( A_gt_thr_bin,predictions=predictions, r_values=r_values, dist_thr=dist_thr, min_dist=min_dist, thresh_subset=thresh_subset) - logging.info(f'Number of duplicates: {len(duplicates_gt)}') + logger.info(f'Number of duplicates: {len(duplicates_gt)}') if len(duplicates_gt) > 0: if plot_duplicates: plt.figure() @@ -1544,6 +1551,7 @@ def save_NWB(self, location: str """ + logger = logging.getLogger("caiman") if identifier is None: identifier = uuid.uuid1().hex @@ -1578,7 +1586,7 @@ def save_NWB(self, io.write(nwbfile) time.sleep(4) # ensure the file is fully closed before opening again in append mode - logging.info('Saving the results in the NWB file...') + logger.info('Saving the results in the NWB file...') with NWBHDF5IO(filename, 'r+') as io: nwbfile = io.read() diff --git a/caiman/source_extraction/cnmf/initialization.py b/caiman/source_extraction/cnmf/initialization.py index 172f4e57b..31ac48e0a 100644 --- a/caiman/source_extraction/cnmf/initialization.py +++ b/caiman/source_extraction/cnmf/initialization.py @@ -75,17 +75,17 @@ def decimate_last_axis(y, sub): def downscale(Y, ds, opencv=False): """downscaling without zero padding faster version of skimage.transform._warps.block_reduce(Y, ds, np.nanmean, np.nan)""" + logger = logging.getLogger("caiman") - from caiman.base.movies import movie d = Y.ndim if opencv and (d in [2, 3]): if d == 2: Y = Y[..., None] ds = tuple(ds) + (1,) else: - Y_ds = movie(Y.transpose(2, 0, 1)).resize(fx=1. / ds[0], fy=1. / ds[1], fz=1. / ds[2], + Y_ds = caiman.base.movies.movie(Y.transpose(2, 0, 1)).resize(fx=1. / ds[0], fy=1. / ds[1], fz=1. / ds[2], interpolation=cv2.INTER_AREA).transpose(1, 2, 0) - logging.info('Downscaling using OpenCV') + logger.info('Downscaling using OpenCV') else: if d > 3: # raise NotImplementedError @@ -278,6 +278,7 @@ def initialize_components(Y, K=30, gSig=[5, 5], gSiz=None, ssub=1, tsub=1, nIter Exception 'You need to define arguments for local NMF' """ + logger = logging.getLogger("caiman") method = method_init if gSiz is None: @@ -289,7 +290,7 @@ def initialize_components(Y, K=30, gSig=[5, 5], gSiz=None, ssub=1, tsub=1, nIter gSiz = np.round(np.asarray(gSiz) / ssub).astype(int) if normalize_init: - logging.info('Variance Normalization') + logger.info('Variance Normalization') if img is None: img = np.mean(Y, axis=-1) img += np.median(img) @@ -305,11 +306,11 @@ def initialize_components(Y, K=30, gSig=[5, 5], gSiz=None, ssub=1, tsub=1, nIter if ssub != 1 or tsub != 1: if method == 'corr_pnr': - logging.info("Spatial/Temporal downsampling 1-photon") + logger.info("Spatial/Temporal downsampling 1-photon") # this increments the performance against ground truth and solves border problems Y_ds = downscale(Y, tuple([ssub] * len(d) + [tsub]), opencv=False) else: - logging.info("Spatial/Temporal downsampling 2-photon") + logger.info("Spatial/Temporal downsampling 2-photon") # this increments the performance against ground truth and solves border problems Y_ds = downscale(Y, tuple([ssub] * len(d) + [tsub]), opencv=True) else: @@ -319,14 +320,14 @@ def initialize_components(Y, K=30, gSig=[5, 5], gSiz=None, ssub=1, tsub=1, nIter if nb > min(np.prod(ds), Y_ds.shape[-1]): nb = -1 - logging.info('Roi Initialization...') + logger.info('Roi Initialization...') if method == 'greedy_roi': Ain, Cin, _, b_in, f_in = greedyROI( Y_ds, nr=K, gSig=gSig, gSiz=gSiz, nIter=nIter, kernel=kernel, nb=nb, rolling_sum=rolling_sum, rolling_length=rolling_length, seed_method=seed_method) if use_hals: - logging.info('Refining Components using HALS NMF iterations') + logger.info('Refining Components using HALS NMF iterations') Ain, Cin, b_in, f_in = hals( Y_ds, Ain, Cin, b_in, f_in, maxIter=maxIter) elif method == 'corr_pnr': @@ -521,15 +522,16 @@ def sparseNMF(Y_ds, nr, max_iter_snmf=200, alpha=0.5, sigma_smooth=(.5, .5, .5), center: np.array 2d array of size nr x 2 [ or 3] with the components centroids """ + logger = logging.getLogger("caiman") m = scipy.ndimage.gaussian_filter(np.transpose( Y_ds, np.roll(np.arange(Y_ds.ndim), 1)), sigma=sigma_smooth, mode='nearest', truncate=truncate) if remove_baseline: - logging.info('Removing baseline') + logger.info('Removing baseline') bl = np.percentile(m, perc_baseline, axis=0) m1 = np.maximum(0, m - bl) else: - logging.info('Not removing baseline') + logger.info('Not removing baseline') bl = np.zeros(m.shape[1:]) m1 = m @@ -537,7 +539,7 @@ def sparseNMF(Y_ds, nr, max_iter_snmf=200, alpha=0.5, sigma_smooth=(.5, .5, .5), d = np.prod(dims) yr = np.reshape(m1, [T, d], order='F') - logging.debug(f"Running SparseNMF with alpha_W={alpha}") + logger.debug(f"Running SparseNMF with alpha_W={alpha}") mdl = NMF(n_components=nr, verbose=False, init='nndsvd', @@ -564,15 +566,16 @@ def sparseNMF(Y_ds, nr, max_iter_snmf=200, alpha=0.5, sigma_smooth=(.5, .5, .5), def compressedNMF(Y_ds, nr, r_ov=10, max_iter_snmf=500, sigma_smooth=(.5, .5, .5), remove_baseline=False, perc_baseline=20, nb=1, truncate=2, tol=1e-3): + logger = logging.getLogger("caiman") m = scipy.ndimage.gaussian_filter(np.transpose( Y_ds, np.roll(np.arange(Y_ds.ndim), 1)), sigma=sigma_smooth, mode='nearest', truncate=truncate) if remove_baseline: - logging.info('REMOVING BASELINE') + logger.info('REMOVING BASELINE') bl = np.percentile(m, perc_baseline, axis=0) m = np.maximum(0, m - bl) else: - logging.info('NOT REMOVING BASELINE') + logger.info('NOT REMOVING BASELINE') bl = np.zeros(m.shape[1:]) T, dims = m.shape[0], m.shape[1:] @@ -618,7 +621,7 @@ def compressedNMF(Y_ds, nr, r_ov=10, max_iter_snmf=500, A /= nA C *= nA[:, np.newaxis] if (np.linalg.norm(C - C__)/np.linalg.norm(C__) < tol) & (np.linalg.norm(A - A__)/np.linalg.norm(A__) < tol): - logging.info(f'Graph NMF converged after {it + 1} iterations') + logger.info(f'Graph NMF converged after {it + 1} iterations') break A_in = A C_in = C @@ -638,15 +641,16 @@ def graphNMF(Y_ds, nr, max_iter_snmf=500, lambda_gnmf=1, perc_baseline=20, nb=1, truncate=2, tol=1e-3, SC_kernel='heat', SC_normalize=True, SC_thr=0, SC_sigma=1, SC_use_NN=False, SC_nnn=20): + logger = logging.getLogger("caiman") m = scipy.ndimage.gaussian_filter(np.transpose( Y_ds, np.roll(np.arange(Y_ds.ndim), 1)), sigma=sigma_smooth, mode='nearest', truncate=truncate) if remove_baseline: - logging.info('REMOVING BASELINE') + logger.info('REMOVING BASELINE') bl = np.percentile(m, perc_baseline, axis=0) m1 = np.maximum(0, m - bl) else: - logging.info('NOT REMOVING BASELINE') + logger.info('NOT REMOVING BASELINE') bl = np.zeros(m.shape[1:]) m1 = m T, dims = m1.shape[0], m1.shape[1:] @@ -669,7 +673,7 @@ def graphNMF(Y_ds, nr, max_iter_snmf=500, lambda_gnmf=1, A /= nA C *= nA[:, np.newaxis] if (np.linalg.norm(C - C_)/np.linalg.norm(C_) < tol) & (np.linalg.norm(A - A_)/np.linalg.norm(A_) < tol): - logging.info(f'Graph NMF converged after {it + 1} iterations') + logger.info(f'Graph NMF converged after {it + 1} iterations') break A_in = A C_in = C @@ -742,7 +746,8 @@ def greedyROI(Y, nr=30, gSig=[5, 5], gSiz=[11, 11], nIter=5, kernel=None, nb=1, """ - logging.info("Greedy initialization of spatial and temporal components using spatial Gaussian filtering") + logger = logging.getLogger("caiman") + logger.info("Greedy initialization of spatial and temporal components using spatial Gaussian filtering") d = np.shape(Y) Y[np.isnan(Y)] = 0 med = np.median(Y, axis=-1) @@ -758,13 +763,13 @@ def greedyROI(Y, nr=30, gSig=[5, 5], gSiz=[11, 11], nIter=5, kernel=None, nb=1, rho = imblur(Y, sig=gSig, siz=gSiz, nDimBlur=Y.ndim - 1, kernel=kernel) if rolling_sum: - logging.info('Using rolling sum for initialization (RollingGreedyROI)') + logger.info('Using rolling sum for initialization (RollingGreedyROI)') rolling_filter = np.ones( (rolling_length), dtype=np.float32) / rolling_length rho_s = scipy.signal.lfilter(rolling_filter, 1., rho**2) v = np.amax(rho_s, axis=-1) else: - logging.info('Using total sum for initialization (GreedyROI)') + logger.info('Using total sum for initialization (GreedyROI)') v = np.sum(rho**2, axis=-1) if seed_method.lower() != 'manual': @@ -1163,11 +1168,12 @@ def greedyROI_corr(Y, Y_ds, max_number=None, gSiz=None, gSig=None, center_psf=Tr init_iter: int, optional number of iterations for 1-photon imaging initialization """ + logger = logging.getLogger("caiman") if min_corr is None or min_pnr is None: raise Exception( 'Either min_corr or min_pnr are None. Both of them must be real numbers.') - logging.info('One photon initialization (GreedyCorr)') + logger.info('One photon initialization (GreedyCorr)') o = options['temporal'].copy() o['s_min'] = None if o['p'] > 1: @@ -1188,7 +1194,7 @@ def greedyROI_corr(Y, Y_ds, max_number=None, gSiz=None, gSig=None, center_psf=Tr if ring_size_factor is not None: # background according to ringmodel - logging.info('Computing ring model background') + logger.info('Computing ring model background') W, b0 = compute_W(Y_ds.reshape((-1, total_frames), order='F'), A, C, (d1, d2), ring_size_factor * gSiz, ssub=ssub_B) @@ -1208,14 +1214,14 @@ def compute_B(b0, W, B): # actually computes -B to efficiently compute Y-B in p B = compute_B(b0, W, B) # "-B" B += Y_ds.reshape((-1, total_frames), order='F') # "Y-B" - logging.info('Updating spatial components') + logger.info('Updating spatial components') A, _, C, _ = caiman.source_extraction.cnmf.spatial.update_spatial_components( B, C=C, f=np.zeros((0, total_frames), np.float32), A_in=A, sn=np.sqrt(downscale((sn**2).reshape(dims, order='F'), tuple([ssub] * len(dims))).ravel() / tsub) / ssub, b_in=np.zeros((d1 * d2, 0), np.float32), dview=None, dims=(d1, d2), **options['spatial']) - logging.info('Updating temporal components') + logger.info('Updating temporal components') C, A = caiman.source_extraction.cnmf.temporal.update_temporal_components( B, spr.csc_matrix(A, dtype=np.float32), np.zeros((d1 * d2, 0), np.float32), @@ -1230,7 +1236,7 @@ def compute_B(b0, W, B): # actually computes -B to efficiently compute Y-B in p if max_number != 0: if i == init_iter-2 and seed_method.lower()[:4] == 'semi': seed_method, min_corr, min_pnr = 'manual', 0, 0 - logging.info('Searching for more neurons in the residual') + logger.info('Searching for more neurons in the residual') A_R, C_R, _, _, center_R = init_neurons_corr_pnr( (B - A.dot(C)).reshape(Y_ds.shape, order='F'), max_number=max_number, gSiz=gSiz, gSig=gSig, @@ -1242,13 +1248,13 @@ def compute_B(b0, W, B): # actually computes -B to efficiently compute Y-B in p C = np.concatenate((C, C_R), 0) # 1st iteration on decimated data - logging.info('Merging components') + logger.info('Merging components') A, C = caiman.source_extraction.cnmf.merging.merge_components( B, A, [], C, None, [], C, [], o, options['spatial'], dview=None, thr=options['merging']['merge_thr'], mx=np.Inf, fast_merge=True)[:2] A = A.astype(np.float32) C = C.astype(np.float32) - logging.info('Updating spatial components') + logger.info('Updating spatial components') A, _, C, _ = caiman.source_extraction.cnmf.spatial.update_spatial_components( B, C=C, f=np.zeros((0, total_frames), np.float32), A_in=A, sn=np.sqrt(downscale((sn**2).reshape(dims, order='F'), @@ -1256,14 +1262,14 @@ def compute_B(b0, W, B): # actually computes -B to efficiently compute Y-B in p b_in=np.zeros((d1 * d2, 0), np.float32), dview=None, dims=(d1, d2), **options['spatial']) A = A.astype(np.float32) - logging.info('Updating temporal components') + logger.info('Updating temporal components') C, A = caiman.source_extraction.cnmf.temporal.update_temporal_components( B, spr.csc_matrix(A), np.zeros((d1 * d2, 0), np.float32), C, np.zeros((0, total_frames), np.float32), dview=None, bl=None, c1=None, sn=None, g=None, **o)[:2] - logging.info('Recomputing background') + logger.info('Recomputing background') # background according to ringmodel W, b0 = compute_W(Y_ds.reshape((-1, total_frames), order='F'), A, C, (d1, d2), ring_size_factor * gSiz, ssub=ssub_B) @@ -1291,19 +1297,19 @@ def compute_B(b0, W, B): # actually computes -B to efficiently compute Y-B in p .reshape((np.prod(dims), K), order='F')) B += Y.reshape((-1, T), order='F') # "Y-B" - logging.info('Merging components') + logger.info('Merging components') A, C = caiman.source_extraction.cnmf.merging.merge_components( B, A, [], C, None, [], C, [], o, options['spatial'], dview=None, thr=options['merging']['merge_thr'], mx=np.Inf, fast_merge=True)[:2] A = A.astype(np.float32) C = C.astype(np.float32) - logging.info('Updating spatial components') + logger.info('Updating spatial components') options['spatial']['se'] = np.ones((1,) * len((d1, d2)), dtype=np.uint8) A, _, C, _ = caiman.source_extraction.cnmf.spatial.update_spatial_components( B, C=C, f=np.zeros((0, T), np.float32), A_in=A, sn=sn, b_in=np.zeros((np.prod(dims), 0), np.float32), dview=None, dims=dims, **options['spatial']) - logging.info('Updating temporal components') + logger.info('Updating temporal components') C, A, b__, f__, S, bl, c1, neurons_sn, g1, YrA, lam__ = \ caiman.source_extraction.cnmf.temporal.update_temporal_components( B, spr.csc_matrix(A, dtype=np.float32), @@ -1316,11 +1322,11 @@ def compute_B(b0, W, B): # actually computes -B to efficiently compute Y-B in p use_NMF = True if nb == -1: - logging.info('Returning full background') + logger.info('Returning full background') b_in = spr.eye(len(B), dtype='float32') f_in = B elif nb > 0: - logging.info(f'Estimate low rank background (rank = {nb})') + logger.info(f'Estimate low rank background (rank = {nb})') print(nb) if use_NMF: model = NMF(n_components=nb, init='nndsvdar') @@ -1334,12 +1340,12 @@ def compute_B(b0, W, B): # actually computes -B to efficiently compute Y-B in p b_in = np.empty((A.shape[0], 0)) f_in = np.empty((0, T)) if nb == 0: - logging.info('Returning background as b0 and W') + logger.info('Returning background as b0 and W') return (A, C, center.T, b_in.astype(np.float32), f_in.astype(np.float32), (S.astype(np.float32), bl, c1, neurons_sn, g1, YrA, lam__, W, b0)) else: - logging.info("Not returning background") + logger.info("Not returning background") return (A, C, center.T, b_in.astype(np.float32), f_in.astype(np.float32), None if ring_size_factor is None else (S.astype(np.float32), bl, c1, neurons_sn, g1, YrA, lam__)) @@ -1408,6 +1414,7 @@ def init_neurons_corr_pnr(data, max_number=None, gSiz=15, gSig=None, center: np.ndarray center locations of all neurons """ + logger = logging.getLogger("caiman") if swap_dim: d1, d2, total_frames = data.shape @@ -1787,9 +1794,9 @@ def onclick(event): break else: if num_neurons % 100 == 1: - logging.info(f'{num_neurons - 1} neurons have been initialized') + logger.info(f'{num_neurons - 1} neurons have been initialized') - logging.info(f'In total, {num_neurons} neurons were initialized.') + logger.info(f'In total, {num_neurons} neurons were initialized.') # A = np.reshape(Ain[:num_neurons], (-1, d1 * d2)).transpose() A = np.reshape(Ain[:num_neurons], (-1, d1 * d2), order='F').transpose() C = Cin[:num_neurons] diff --git a/caiman/source_extraction/cnmf/map_reduce.py b/caiman/source_extraction/cnmf/map_reduce.py index 8a4d64ab7..ba6cd0e4f 100644 --- a/caiman/source_extraction/cnmf/map_reduce.py +++ b/caiman/source_extraction/cnmf/map_reduce.py @@ -67,11 +67,10 @@ def cnmf_patches(args_in): """ #FIXME Fix in-function imports - import logging from . import cnmf + logger = logging.getLogger("caiman") file_name, idx_, shapes, params = args_in - logger = logging.getLogger(__name__) name_log = os.path.basename( file_name[:-5]) + '_LOG_ ' + str(idx_[0]) + '_' + str(idx_[-1]) @@ -185,6 +184,7 @@ def run_CNMF_patches(file_name, shape, params, gnb=1, dview=None, Raises: Empty Exception """ + logger = logging.getLogger("caiman") dims = shape[:-1] d = np.prod(dims) @@ -224,7 +224,7 @@ def run_CNMF_patches(file_name, shape, params, gnb=1, dview=None, foo[id_f] = 1 patch_centers.append(scipy.ndimage.center_of_mass( foo.reshape(dims, order='F'))) - logging.info(f'Patch size: {id_2d}') + logger.info(f'Patch size: {id_2d}') st = time.time() if dview is not None: if 'multiprocessing' in str(type(dview)): @@ -237,12 +237,12 @@ def run_CNMF_patches(file_name, shape, params, gnb=1, dview=None, print('Something went wrong') raise finally: - logging.info('Patch processing complete') + logger.info('Patch processing complete') else: file_res = list(map(cnmf_patches, args_in)) - logging.info('Elapsed time for processing patches: \ + logger.info('Elapsed time for processing patches: \ {0}s'.format(str(time.time() - st).split('.')[0])) # count components count = 0 @@ -304,7 +304,7 @@ def run_CNMF_patches(file_name, shape, params, gnb=1, dview=None, # instead of filling in the matrices, construct lists with their non-zero # entries and coordinates - logging.info('Embedding patches results into whole FOV') + logger.info('Embedding patches results into whole FOV') for fff in file_res: if fff is not None: @@ -360,7 +360,7 @@ def run_CNMF_patches(file_name, shape, params, gnb=1, dview=None, else: empty += 1 - logging.debug('Skipped %d empty patches', empty) + logger.debug(f'Skipped {empty} empty patches') if count_bgr > 0: idx_tot_B = np.concatenate(idx_tot_B) b_tot = np.concatenate(b_tot) @@ -396,7 +396,7 @@ def run_CNMF_patches(file_name, shape, params, gnb=1, dview=None, optional_outputs['F'] = F_tot optional_outputs['mask'] = mask - logging.info("Constructing background") + logger.info("Constructing background") Im = scipy.sparse.csr_matrix( (1. / (mask + np.finfo(np.float32).eps), (np.arange(d), np.arange(d))), dtype=np.float32) @@ -410,9 +410,9 @@ def run_CNMF_patches(file_name, shape, params, gnb=1, dview=None, elif low_rank_background is None: b = Im.dot(B_tot) f = F_tot - logging.info("Leaving background components intact") + logger.info("Leaving background components intact") elif low_rank_background: - logging.info("Compressing background components with a low rank NMF") + logger.info("Compressing background components with a low rank NMF") B_tot = Im.dot(B_tot) Bm = (B_tot) #f = np.r_[np.atleast_2d(np.mean(F_tot, axis=0)), @@ -445,7 +445,7 @@ def run_CNMF_patches(file_name, shape, params, gnb=1, dview=None, # B_tot = scipy.sparse.coo_matrix(B_tot) f *= nB[:, None] else: - logging.info('Removing overlapping background components \ + logger.info('Removing overlapping background components \ from different patches') nA = np.ravel(np.sqrt(A_tot.power(2).sum(0))) A_tot /= nA @@ -475,8 +475,8 @@ def run_CNMF_patches(file_name, shape, params, gnb=1, dview=None, b = B_tot f = F_tot - logging.info('using one background component per patch') + logger.info('using one background component per patch') - logging.info("Constructing background DONE") + logger.info("Constructing background DONE") return A_tot, C_tot, YrA_tot, b, f, sn_tot, optional_outputs diff --git a/caiman/source_extraction/cnmf/merging.py b/caiman/source_extraction/cnmf/merging.py index 5e6452232..a01244472 100644 --- a/caiman/source_extraction/cnmf/merging.py +++ b/caiman/source_extraction/cnmf/merging.py @@ -120,6 +120,7 @@ def merge_components(Y, A, b, C, R, f, S, sn_pix, temporal_params, Exception "The number of elements of bl, c1, g, sn must match the number of components" """ + logger = logging.getLogger("caiman") # tests and initialization nr = A.shape[1] A = csc_matrix(A) @@ -222,7 +223,7 @@ def merge_components(Y, A, b, C, R, f, S, sn_pix, temporal_params, merged_ROIs = [] for i in range(nbmrg): merged_ROI = np.where(list_conxcomp[:, ind[i]])[0] - logging.info(f'Merging components {merged_ROI}') + logger.info(f'Merging components {merged_ROI}') merged_ROIs.append(merged_ROI) Acsc = A.tocsc()[:, merged_ROI] Ctmp = np.array(C)[merged_ROI, :] + np.array(R)[merged_ROI, :] @@ -279,7 +280,7 @@ def merge_components(Y, A, b, C, R, f, S, sn_pix, temporal_params, nr = nr - len(neur_id) + len(C_merged) else: - logging.info('No more components merged!') + logger.info('No more components merged!') merged_ROIs = [] empty = [] @@ -292,6 +293,7 @@ def merge_iter(a): return res def merge_iteration(Acsc, C_to_norm, Ctmp, fast_merge, g, g_idx, indx, temporal_params): + logger = logging.getLogger("caiman") if fast_merge: # we normalize the values of different A's to be able to compare them efficiently. we then sum them @@ -304,7 +306,7 @@ def merge_iteration(Acsc, C_to_norm, Ctmp, fast_merge, g, g_idx, indx, temporal_ break computedA = np.maximum(Acsc.dot(Ctmp.dot(computedC.T)) / nc, 0) else: - logging.info('Simple merging ny taking best neuron') + logger.info('Simple merging ny taking best neuron') computedC = Ctmp[indx] computedA = Acsc[:, indx] # then we de-normalize them using A_to_norm diff --git a/caiman/source_extraction/cnmf/online_cnmf.py b/caiman/source_extraction/cnmf/online_cnmf.py index 2a1aede6c..c84ec3f5a 100644 --- a/caiman/source_extraction/cnmf/online_cnmf.py +++ b/caiman/source_extraction/cnmf/online_cnmf.py @@ -119,6 +119,7 @@ def __init__(self, params=None, estimates=None, path=None, dview=None, Ain=None) @profile def _prepare_object(self, Yr, T, new_dims=None, idx_components=None): + logger = logging.getLogger("caiman") init_batch = self.params.get('online', 'init_batch') old_dims = self.params.get('data', 'dims') self.is1p = (self.params.get('init', 'method_init') == 'corr_pnr' and @@ -248,7 +249,7 @@ def _prepare_object(self, Yr, T, new_dims=None, idx_components=None): self.estimates.CY = self.estimates.CY * 1. / self.params.get('online', 'init_batch') self.estimates.CC = 1 * self.estimates.CC / self.params.get('online', 'init_batch') - logging.info(f'Expecting {expected_comps} components') + logger.info(f'Expecting {expected_comps} components') self.estimates.CY.resize([expected_comps + self.params.get('init', 'nb'), self.estimates.CY.shape[-1]], refcheck=False) if self.params.get('online', 'use_dense'): self.estimates.Ab_dense = np.zeros((self.estimates.CY.shape[-1], expected_comps + self.params.get('init', 'nb')), @@ -325,11 +326,11 @@ def _prepare_object(self, Yr, T, new_dims=None, idx_components=None): else: try: from tensorflow.keras.models import model_from_json - logging.info('Using Keras') + logger.info('Using Keras') use_keras = True except(ModuleNotFoundError): use_keras = False - logging.info('Using Tensorflow') + logger.info('Using Tensorflow') if use_keras: path = self.params.get('online', 'path_to_model').split(".")[:-1] json_path = ".".join(path + ["json"]) @@ -420,7 +421,7 @@ def fit_next(self, t, frame_in, num_iters_hals=3): num_iters_hals: int, optional maximal number of iterations for HALS (NNLS via blockCD) """ - + logger = logging.getLogger("caiman") t_start = time() # locally scoped variables for brevity of code and faster look up @@ -581,8 +582,7 @@ def fit_next(self, t, frame_in, num_iters_hals=3): self.estimates.Ab_dense = np.zeros((self.estimates.CY.shape[-1], expected_comps + nb_), dtype=np.float32) self.estimates.Ab_dense[:, :Ab_.shape[1]] = Ab_.toarray() - logging.info('Increasing number of expected components to:' + - str(expected_comps)) + logger.info(f'Increasing number of expected components to: {expected_comps}') self.update_counter.resize(self.N, refcheck=False) self.estimates.noisyC[self.M - num_added:self.M, t - mbs + @@ -739,7 +739,7 @@ def fit_next(self, t, frame_in, num_iters_hals=3): if not self.params.get('online', 'dist_shape_update'): # bulk shape update if ((t + 1 - self.params.get('online', 'init_batch')) % self.params.get('online', 'update_freq') == 0): - logging.info('Updating Shapes') + logger.info('Updating Shapes') if self.N > self.params.get('online', 'max_comp_update_shape'): indicator_components = np.where(self.update_counter <= @@ -875,6 +875,7 @@ def process_pixel(p): return self def initialize_online(self, model_LN=None, T=None): + logger = logging.getLogger("caiman") fls = self.params.get('data', 'fnames') opts = self.params.get_group('online') Y = caiman.load(fls[0], subindices=slice(0, opts['init_batch'], @@ -909,7 +910,7 @@ def initialize_online(self, model_LN=None, T=None): Y = Y - img_min img_norm = np.std(Y, axis=0) img_norm += np.median(img_norm) # normalize data to equalize the FOV - logging.info('Frame size:' + str(img_norm.shape)) + logger.info(f'Frame size: {img_norm.shape}') if self.params.get('online', 'normalize'): Y = Y/img_norm[None, :, :] if opts['show_movie']: @@ -1108,11 +1109,12 @@ def fit_online(self, **kwargs): Returns: self (results of caiman online) """ + logger = logging.getLogger("caiman") self.t_init = -time() fls = self.params.get('data', 'fnames') init_batch = self.params.get('online', 'init_batch') if self.params.get('online', 'ring_CNN'): - logging.info('Using Ring CNN model') + logger.info('Using Ring CNN model') gSig = self.params.get('init', 'gSig')[0] width = self.params.get('ring_CNN', 'width') nch = self.params.get('ring_CNN', 'n_channels') @@ -1127,22 +1129,22 @@ def fit_online(self, **kwargs): Y = caiman.base.movies.load(fls[0], subindices=slice(init_batch), var_name_hdf5=self.params.get('data', 'var_name_hdf5')) shape = Y.shape[1:] + (1,) - logging.info('Starting background model training.') + logger.info('Starting background model training.') model_LN = create_LN_model(Y, shape=shape, n_channels=nch, lr=self.params.get('ring_CNN', 'lr'), gSig=gSig, loss=loss_fn, width=width, use_add=self.params.get('ring_CNN', 'use_add'), use_bias=self.params.get('ring_CNN', 'use_bias')) if self.params.get('ring_CNN', 'reuse_model'): - logging.info('Using existing model from {self.params.get("ring_CNN", "path_to_model")}') + logger.info('Using existing model from {self.params.get("ring_CNN", "path_to_model")}') model_LN.load_weights(self.params.get('ring_CNN', 'path_to_model')) else: - logging.info('Estimating model from scratch, starting training.') + logger.info('Estimating model from scratch, starting training.') model_LN, history, path_to_model = fit_NL_model(model_LN, Y, epochs=self.params.get('ring_CNN', 'max_epochs'), patience=self.params.get('ring_CNN', 'patience'), schedule=sch) - logging.info(f'Training complete. Model saved in {path_to_model}.') + logger.info(f'Training complete. Model saved in {path_to_model}.') self.params.set('ring_CNN', {'path_to_model': path_to_model}) else: model_LN = None @@ -1171,7 +1173,7 @@ def fit_online(self, **kwargs): for iter in range(epochs): if iter == epochs - 1 and self.params.get('online', 'stop_detection'): self.params.set('online', {'update_num_comps': False}) - logging.info(f"Searching for new components set to: {self.params.get('online', 'update_num_comps')}") + logger.info(f"Searching for new components set to: {self.params.get('online', 'update_num_comps')}") if iter > 0: # if not on first epoch process all files from scratch process_files = fls[:init_files + extra_files] @@ -1180,7 +1182,7 @@ def fit_online(self, **kwargs): # Go through all files # TODO Use better variable names for file_count, ffll in enumerate(process_files): - logging.warning(f'Now processing file {ffll}') + logger.warning(f'Now processing file {ffll}') Y_ = caiman.base.movies.load_iter( ffll, var_name_hdf5=self.params.get('data', 'var_name_hdf5'), subindices=slice(init_batc_iter[file_count], None, None)) @@ -1206,10 +1208,9 @@ def fit_online(self, **kwargs): raise Exception('Frame ' + str(frame_count) + ' contains NaN') if t % 500 == 0: - logging.info('Epoch: ' + str(iter + 1) + '. ' + str(t) + + logger.info(f'Epoch: {iter + 1}. {t}' + ' frames have been processed in total. ' + - str(self.N - old_comps) + - ' new components were added. Total # of components is ' + f'{self.N - old_comps} new components were added. Total # of components is ' + str(self.estimates.Ab.shape[-1] - self.params.get('init', 'nb'))) old_comps = self.N diff --git a/caiman/source_extraction/cnmf/params.py b/caiman/source_extraction/cnmf/params.py index 7ca69fa04..2014860df 100644 --- a/caiman/source_extraction/cnmf/params.py +++ b/caiman/source_extraction/cnmf/params.py @@ -10,8 +10,8 @@ from scipy.ndimage import generate_binary_structure, iterate_structure from typing import Optional -import caiman.utils.utils import caiman.base.movies +import caiman.utils.utils from caiman.paths import caiman_datadir from caiman.source_extraction.cnmf.utilities import dict_compare @@ -903,6 +903,7 @@ def check_consistency(self): """ Populates the params object with some dataset dependent values and ensures that certain constraints are satisfied. """ + logger = logging.getLogger("caiman") self.data['last_commit'] = '-'.join(caiman.utils.utils.get_caiman_version()) if self.data['dims'] is None and self.data['fnames'] is not None: self.data['dims'] = caiman.base.movies.get_file_size(self.data['fnames'], var_name_hdf5=self.data['var_name_hdf5'])[0] @@ -936,18 +937,18 @@ def check_consistency(self): self.init['gSiz'] = tuple([gs + 1 if gs % 2 == 0 else gs for gs in self.init['gSiz']]) if self.patch['rf'] is not None: if np.any(np.array(self.patch['rf']) <= self.init['gSiz'][0]): - logging.warning(f"Changing rf from {self.patch['rf']} to {2 * self.init['gSiz'][0]} because the constraint rf > gSiz was not satisfied.") + logger.warning(f"Changing rf from {self.patch['rf']} to {2 * self.init['gSiz'][0]} because the constraint rf > gSiz was not satisfied.") if self.init['nb'] <= 0 and (self.patch['nb_patch'] != self.init['nb'] or self.patch['low_rank_background'] is not None): - logging.warning(f"gnb={self.init['nb']}, hence setting keys nb_patch and low_rank_background in group patch automatically.") + logger.warning(f"gnb={self.init['nb']}, hence setting keys nb_patch and low_rank_background in group patch automatically.") self.set('patch', {'nb_patch': self.init['nb'], 'low_rank_background': None}) if self.init['nb'] == -1 and self.spatial['update_background_components']: - logging.warning("gnb=-1, hence setting key update_background_components " + + logger.warning("gnb=-1, hence setting key update_background_components " + "in group spatial automatically to False.") self.set('spatial', {'update_background_components': False}) if self.init['method_init'] == 'corr_pnr' and self.init['ring_size_factor'] is not None \ and self.init['normalize_init']: - logging.warning("using CNMF-E's ringmodel for background hence setting key " + + logger.warning("using CNMF-E's ringmodel for background hence setting key " + "normalize_init in group init automatically to False.") self.set('init', {'normalize_init': False}) if self.motion['is3D']: @@ -955,14 +956,14 @@ def check_consistency(self): if len(self.motion[a]) != 3: if self.motion[a][0] == self.motion[a][1]: self.motion[a] = (self.motion[a][0],) * 3 - logging.warning("is3D=True, hence setting key " + a + + logger.warning("is3D=True, hence setting key " + a + " automatically to " + str(self.motion[a])) else: raise ValueError(a + ' has to be a tuple of length 3 for volumetric 3D data') for key in ('max_num_added', 'min_num_trial'): if (self.online[key] == 0 and self.online['update_num_comps']): self.set('online', {'update_num_comps': False}) - logging.warning(key + "=0, hence setting key update_num_comps " + + logger.warning(key + "=0, hence setting key update_num_comps " + "in group online automatically to False.") # FIXME The authoritative value is stored in the init field. This should later be refactored out # into a general section, once we're passing around the CNMFParams object rather than splatting it out @@ -985,8 +986,9 @@ def set(self, group:str, val_dict:dict, set_if_not_exists:bool=False, verbose=Fa A future version of caiman may make this method private. """ + logger = logging.getLogger("caiman") if set_if_not_exists: - logging.warning("The set_if_not_exists flag for CNMFParams.set() is deprecated and will be removed in a future version of Caiman") + logger.warning("The set_if_not_exists flag for CNMFParams.set() is deprecated and will be removed in a future version of Caiman") # can't easily catch if it's passed but set to False, but that wouldn't do anything because of the default, # and if they get that error it's at least really easy to fix - just remove the flag # we don't want to support this because it makes the structure of the object unpredictable except at runtime @@ -998,14 +1000,14 @@ def set(self, group:str, val_dict:dict, set_if_not_exists:bool=False, verbose=Fa for k, v in val_dict.items(): if k not in d and not set_if_not_exists: if verbose: - logging.warning( + logger.warning( f"{group}/{k} not set: invalid target in CNMFParams object") else: try: if np.any(d[k] != v): - logging.info(f"Changing key {k} in group {group} from {d[k]} to {v}") + logger.info(f"Changing key {k} in group {group} from {d[k]} to {v}") except ValueError: # d[k] and v also differ if above comparison fails, e.g. lists of different length - logging.info(f"Changing key {k} in group {group} from {d[k]} to {v}") + logger.info(f"Changing key {k} in group {group} from {d[k]} to {v}") d[k] = v def get(self, group, key): @@ -1129,11 +1131,11 @@ def change_params(self, params_dict, allow_legacy:bool=True, warn_unused:bool=Tr if k == 'nb' and paramkey != 'init': # Special casing to handle a misdesign in CNMFParams where some keys must have the same value in different # sections. - logging.warning("The 'nb' parameter can only be set in the init part of CNMFParams. Attempts to set it elsewhere are ignored") + logger.warning("The 'nb' parameter can only be set in the init part of CNMFParams. Attempts to set it elsewhere are ignored") continue if k not in cat_handle and warn_unused: # For regular/pathed API, we can notice right away if the user gave us something that won't update the object - logging.warning(f"In setting CNMFParams, provided key {paramkey}/{k} was not consumed. This is a bug!") + logger.warning(f"In setting CNMFParams, provided key {paramkey}/{k} was not consumed. This is a bug!") else: cat_handle[k] = v # BEGIN code that we will remove in some future version of caiman @@ -1147,13 +1149,13 @@ def change_params(self, params_dict, allow_legacy:bool=True, warn_unused:bool=Tr cat_handle[paramkey] = params_dict[paramkey] # Do the update if legacy_used: if not nagged_once: - logging.warning(f"In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)") + logger.warning(f"In setting CNMFParams, non-pathed parameters were used; this is deprecated. In some future version of Caiman, allow_legacy will default to False (and eventually will be removed)") nagged_once = True # END if warn_unused: for toplevel_k in params_dict: if toplevel_k not in consumed and toplevel_k not in list(self.__dict__.keys()): # When we remove legacy behaviour, this logic will simplify and fold into above - logging.warning(f"In setting CNMFParams, provided toplevel key {toplevel_k} was unused. This is a bug!") + logger.warning(f"In setting CNMFParams, provided toplevel key {toplevel_k} was unused. This is a bug!") self.check_consistency() def change_params_from_json(self, jsonstring:str, verbose:bool=False) -> None: diff --git a/caiman/source_extraction/cnmf/pre_processing.py b/caiman/source_extraction/cnmf/pre_processing.py index 7a880225b..d7eef9609 100644 --- a/caiman/source_extraction/cnmf/pre_processing.py +++ b/caiman/source_extraction/cnmf/pre_processing.py @@ -37,10 +37,11 @@ def interpolate_missing_data(Y): Raises: Exception 'The algorithm has not been tested with missing values (NaNs). Remove NaNs and rerun the algorithm.' """ + logger = logging.getLogger("caiman") coor = [] - logging.info('Checking for missing data entries (NaN)') + logger.info('Checking for missing data entries (NaN)') if np.any(np.isnan(Y)): - logging.info('Interpolating missing data') + logger.info('Interpolating missing data') for idx, row in enumerate(Y): nans = np.where(np.isnan(row))[0] n_nans = np.where(~np.isnan(row))[0] diff --git a/caiman/source_extraction/cnmf/spatial.py b/caiman/source_extraction/cnmf/spatial.py index 045027c8a..0ba5f2b4e 100644 --- a/caiman/source_extraction/cnmf/spatial.py +++ b/caiman/source_extraction/cnmf/spatial.py @@ -8,17 +8,19 @@ import logging import numpy as np import os +import psutil import scipy from scipy.sparse import coo_matrix, csc_matrix, csr_matrix from scipy.sparse import spdiags from scipy.linalg import eig from scipy.ndimage import ( - label, binary_dilation, binary_closing, - median_filter, generate_binary_structure, - iterate_structure + grey_dilation, + iterate_structure, + label, + median_filter ) import shutil from sklearn.decomposition import NMF @@ -26,7 +28,6 @@ from sklearn.pipeline import make_pipeline import tempfile import time -import psutil import caiman.mmapping import caiman.utils.stats @@ -151,8 +152,9 @@ def update_spatial_components(Y, C=None, f=None, A_in=None, sn=None, dims=None, Exception "Failed to delete: " + folder """ + logger = logging.getLogger("caiman") # TODO fix documentation on backend - #logging.info('Initializing update of Spatial Components') + logger.info('Initializing update of Spatial Components') if expandCore is None: expandCore = iterate_structure( @@ -166,7 +168,7 @@ def update_spatial_components(Y, C=None, f=None, A_in=None, sn=None, dims=None, Y, A_in, C, f, n_pixels_per_process, nb) start_time = time.time() - logging.info('Computing support of spatial components') + logger.info('Computing support of spatial components') # we compute the indicator from distance indicator ind2_, nr, C, f, b_, A_in = computing_indicator( Y, A_in, b_in, C, f, nb, method_exp, dims, min_size, max_size, dist, expandCore, dview) @@ -174,7 +176,7 @@ def update_spatial_components(Y, C=None, f=None, A_in=None, sn=None, dims=None, # remove components that are empty or have a nan ff = np.where((np.sum(C, axis=1)==0) + np.isnan(np.sum(C, axis=1)))[0] if np.size(ff) > 0: - logging.info(f"Eliminating empty and nan components: {ff}") + logger.info(f"Eliminating empty and nan components: {ff}") A_in = caiman.utils.stats.csc_column_remove(A_in, list(ff)) C = np.delete(C, list(ff), 0) # update indices @@ -195,13 +197,13 @@ def update_spatial_components(Y, C=None, f=None, A_in=None, sn=None, dims=None, if b_in is None: b_in = b_ - logging.info('Memory mapping') + logger.info('Memory mapping') # we create a memory map file if not already the case, we send Cf, a # matrix that include background components C_name, Y_name, folder = creatememmap(Y, np.vstack((C, f)), dview) # we create a pixel group array (chunks for the cnmf)for the parallelization of the process - logging.info('Updating Spatial Components using lasso lars') + logger.info('Updating Spatial Components using lasso lars') cct = np.diag(C.dot(C.T)) pixel_groups = [] for i in range(0, np.prod(dims) - n_pixels_per_process + 1, n_pixels_per_process): @@ -234,13 +236,13 @@ def update_spatial_components(Y, C=None, f=None, A_in=None, sn=None, dims=None, cols.extend(idxs_[nz]) A_ = scipy.sparse.coo_matrix((data, (rows, cols)), shape=(d, nr + np.size(f, 0))) - logging.info("thresholding components") + logger.info("thresholding components") A_ = threshold_components(A_, dims, dview=dview, medw=medw, thr_method=thr_method, maxthr=maxthr, nrgthr=nrgthr, extract_cc=extract_cc, se=se, ss=ss) #ff = np.where(np.sum(A_, axis=0) == 0) # remove empty components ff = np.asarray(A_.sum(0) == 0).nonzero()[1] if np.size(ff) > 0: - logging.info(f'removing {ff.shape[0]} empty spatial component(s)') + logger.info(f'removing {ff.shape[0]} empty spatial component(s)') if any(ff < nr): A_ = caiman.utils.stats.csc_column_remove(A_, list(ff[ff < nr])) C = np.delete(C, list(ff[ff < nr]), 0) @@ -257,7 +259,7 @@ def update_spatial_components(Y, C=None, f=None, A_in=None, sn=None, dims=None, A_ = A_[:, :nr] if update_background_components: A_ = csr_matrix(A_) - logging.info("Computing residuals") + logger.info("Computing residuals") if 'memmap' in str(type(Y)): bl_siz1 = Y.shape[0] // (num_blocks_per_run_spat - 1) bl_siz2 = psutil.virtual_memory().available // (4*Y.shape[-1]*(num_blocks_per_run_spat + 1)) @@ -284,11 +286,11 @@ def update_spatial_components(Y, C=None, f=None, A_in=None, sn=None, dims=None, # except NameError: b = b_in # print(("--- %s seconds ---" % (time.time() - start_time))) - logging.info('Updating done in ' + + logger.info('Updating done in ' + '{0}s'.format(str(time.time() - start_time).split(".")[0])) try: # clean up # remove temporary file created - logging.info("Removing created tempfiles") + logger.info("Removing created tempfiles") shutil.rmtree(folder) except: raise Exception("Failed to delete: " + folder) @@ -841,7 +843,7 @@ def determine_search_location(A, dims, method='ellipse', min_size=3, max_size=8, Exception 'You cannot pass empty (all zeros) components!' """ - from scipy.ndimage import grey_dilation + logger = logging.getLogger("caiman") # we initialize the values if len(dims) == 2: @@ -918,7 +920,7 @@ def determine_search_location(A, dims, method='ellipse', min_size=3, max_size=8, dist_indicator = csc_matrix((data, indices, indptr), shape=(d, nr)) else: - logging.info('dilate in parallel...') + logger.info('dilate in parallel...') pars = [] for i in range(nr): pars.append([A[:, i], dims, expandCore, d]) diff --git a/caiman/source_extraction/cnmf/temporal.py b/caiman/source_extraction/cnmf/temporal.py index b5bdde791..1ee1ee65a 100644 --- a/caiman/source_extraction/cnmf/temporal.py +++ b/caiman/source_extraction/cnmf/temporal.py @@ -169,6 +169,7 @@ def update_temporal_components(Y, A, b, Cin, fin, bl=None, c1=None, g=None, sn=N Automatically tuned sparsity parameter """ + logger = logging.getLogger("caiman") if 'p' not in kwargs or kwargs['p'] is None: raise Exception("You have to provide a value for p") @@ -197,7 +198,7 @@ def update_temporal_components(Y, A, b, Cin, fin, bl=None, c1=None, g=None, sn=N C = Cin.copy() nA = np.ravel(A.power(2).sum(axis=0)) + np.finfo(np.float32).eps - logging.info('Generating residuals') + logger.info('Generating residuals') # dview_res = None if block_size >= 500 else dview if 'memmap' in str(type(Y)): bl_siz1 = d // (np.maximum(num_blocks_per_run_temp - 1, 1)) @@ -211,13 +212,13 @@ def update_temporal_components(Y, A, b, Cin, fin, bl=None, c1=None, g=None, sn=N YrA = YA - AA.T.dot(Cin).T # creating the patch of components to be computed in parallel parrllcomp, len_parrllcomp = caiman.source_extraction.cnmf.utilities.update_order_greedy(AA[:nr, :][:, :nr]) - logging.info("entering the deconvolution ") + logger.info("entering the deconvolution ") C, S, bl, YrA, c1, sn, g, lam = update_iteration(parrllcomp, len_parrllcomp, nb, C, S, bl, nr, ITER, YrA, c1, sn, g, Cin, T, nA, dview, debug, AA, kwargs) ff = np.where(np.sum(C, axis=1) == 0) # remove empty components if np.size(ff) > 0: # Eliminating empty temporal components ff = ff[0] - logging.info(f'removing {len(ff)} empty spatial component(s)') + logger.info(f'removing {len(ff)} empty spatial component(s)') keep = list(range(A.shape[1])) for i in ff: keep.remove(i) @@ -327,6 +328,7 @@ def update_iteration(parrllcomp, len_parrllcomp, nb, C, S, bl, nr, YrA corresponds to the residual trace for each component and is used for faster plotting (K x T) """ + logger = logging.getLogger("caiman") lam = np.repeat(None, nr) for _ in range(ITER): @@ -375,7 +377,7 @@ def update_iteration(parrllcomp, len_parrllcomp, nb, C, S, bl, nr, YrA -= AA[jo, :].T.dot(Ctemp - C[jo, :]).T C[jo, :] = Ctemp.copy() S[jo, :] = Stemp - logging.info(str(np.sum(len_parrllcomp[:count + 1])) + + logger.info(str(np.sum(len_parrllcomp[:count + 1])) + f" out of total {nr} temporal components updated") for ii in np.arange(nr, nr + nb): @@ -388,13 +390,13 @@ def update_iteration(parrllcomp, len_parrllcomp, nb, C, S, bl, nr, try: if scipy.linalg.norm(Cin - C, 'fro') <= 1e-3*scipy.linalg.norm(C, 'fro'): - logging.info("stopping: overall temporal component not changing" + + logger.info("stopping: overall temporal component not changing" + " significantly") break else: # we keep Cin and do the iteration once more Cin = C.copy() except ValueError: - logging.warning("Aborting updating of temporal components due" + + logger.warning("Aborting updating of temporal components due" + " to possible numerical issues.") C = Cin.copy() break diff --git a/caiman/source_extraction/cnmf/utilities.py b/caiman/source_extraction/cnmf/utilities.py index c73678adb..1a935ab67 100644 --- a/caiman/source_extraction/cnmf/utilities.py +++ b/caiman/source_extraction/cnmf/utilities.py @@ -482,15 +482,16 @@ def detrend_df_f(A, b, C, f, YrA=None, quantileMin=8, frames_window=500, F_df: the computed Calcium activity to the derivative of f """ + logger = logging.getLogger("caiman") if C is None: - logging.warning("There are no components for DF/F extraction!") + logger.warning("There are no components for DF/F extraction!") return None if b is None or f is None: b = np.zeros((A.shape[0], 1)) f = np.zeros((1, C.shape[1])) - logging.warning("Background components not present. Results should" + + logger.warning("Background components not present. Results should" + " not be interpreted as DF/F normalized but only" + " as detrended.") detrend_only = True diff --git a/caiman/summary_images.py b/caiman/summary_images.py index f9a841d35..de4e40792 100644 --- a/caiman/summary_images.py +++ b/caiman/summary_images.py @@ -39,6 +39,7 @@ def max_correlation_image(Y, bin_size: int = 1000, eight_neighbours: bool = True Cn: d1 x d2 [x d3] matrix, max correlation image """ + logger = logging.getLogger("caiman") if swap_dim: Y = np.transpose(Y, tuple(np.hstack((Y.ndim - 1, list(range(Y.ndim))[:-1])))) @@ -57,7 +58,7 @@ def max_correlation_image(Y, bin_size: int = 1000, eight_neighbours: bool = True Cn_bins[i] = local_correlations_fft(Y[i * bin_size:(i + 1) * bin_size], eight_neighbours=eight_neighbours, swap_dim=False) - logging.debug(i * bin_size) + logger.debug(i * bin_size) Cn = np.max(Cn_bins, axis=0) return Cn diff --git a/caiman/tests/comparison/comparison.py b/caiman/tests/comparison/comparison.py index 034141ac3..d866bd3aa 100644 --- a/caiman/tests/comparison/comparison.py +++ b/caiman/tests/comparison/comparison.py @@ -23,10 +23,7 @@ # You can log to a file using the filename parameter, or make the output more or less # verbose by setting level to logging.DEBUG, logging.INFO, logging.WARNING, or logging.ERROR -logging.basicConfig( - format="%(relativeCreated)12d [%(filename)s:%(funcName)20s():%(lineno)s] [%(process)d] %(message)s", - # filename="/tmp/caiman.log", - level=logging.DEBUG) +logging.getLogger("caiman").setLevel(logging.DEBUG) import caiman as cm from caiman.paths import caiman_datadir diff --git a/caiman/tests/comparison_general.py b/caiman/tests/comparison_general.py index b014284c4..da0538de8 100644 --- a/caiman/tests/comparison_general.py +++ b/caiman/tests/comparison_general.py @@ -49,10 +49,7 @@ # You can log to a file using the filename parameter, or make the output more or less # verbose by setting level to logging.DEBUG, logging.INFO, logging.WARNING, or logging.ERROR -logging.basicConfig( - format="%(relativeCreated)12d [%(filename)s:%(funcName)20s():%(lineno)s] [%(process)d] %(message)s", - # filename="/tmp/caiman.log", - level=logging.DEBUG) +logging.getLogger("caiman").setLevel(logging.DEBUG) # GLOBAL VAR params_movie = { diff --git a/caiman/tests/comparison_humans.py b/caiman/tests/comparison_humans.py index 5b955e26b..38fcca106 100644 --- a/caiman/tests/comparison_humans.py +++ b/caiman/tests/comparison_humans.py @@ -38,10 +38,7 @@ from caiman.source_extraction.cnmf import params as params from caiman.source_extraction.cnmf.cnmf import load_CNMF -logging.basicConfig(format= - "%(relativeCreated)12d [%(filename)s:%(funcName)20s():%(lineno)s]"\ - "[%(process)d] %(message)s", - level=logging.ERROR) +logging.getLogger("caiman").setLevel(logging.ERROR) warnings.filterwarnings("ignore", category=FutureWarning) # %% ANALYSIS MODE AND PARAMETERS diff --git a/caiman/tests/comparison_humans_online.py b/caiman/tests/comparison_humans_online.py index e01fbb33a..ba0e61434 100644 --- a/caiman/tests/comparison_humans_online.py +++ b/caiman/tests/comparison_humans_online.py @@ -32,10 +32,7 @@ except: print('OpenCV is naturally single threaded') -logging.basicConfig(format= - "%(relativeCreated)12d [%(filename)s:%(funcName)20s():%(lineno)s]"\ - "[%(process)d] %(message)s", - level=logging.ERROR) +logging.getLogger("caiman").setLevel(logging.ERROR) # %% Select a dataset (specify the ID variable as a list of datasets to be processed) # 0: neuforinder.03.00.test (N.03.00.t) # 1: neurofinder.04.00.test (N.04.00.t) diff --git a/caiman/tests/test_deconvolution.py b/caiman/tests/test_deconvolution.py index b4d53d585..46694a0fc 100644 --- a/caiman/tests/test_deconvolution.py +++ b/caiman/tests/test_deconvolution.py @@ -11,11 +11,7 @@ # You can log to a file using the filename parameter, or make the output more or less # verbose by setting level to logging.DEBUG, logging.INFO, logging.WARNING, or logging.ERROR -logging.basicConfig( - format="%(relativeCreated)12d [%(filename)s:%(funcName)20s():%(lineno)s] [%(process)d] %(message)s", - # filename="/tmp/caiman.log", - level=logging.DEBUG) - +logging.getLogger("caiman").setLevel(logging.DEBUG) def gen_data(g=[.95], sn=.2, T=1000, framerate=30, firerate=.5, b=10, N=1, seed=0): """ diff --git a/caiman/utils/labelling.py b/caiman/utils/labelling.py index 82124b4af..95dbc0264 100644 --- a/caiman/utils/labelling.py +++ b/caiman/utils/labelling.py @@ -16,7 +16,7 @@ def pre_process_handle(args): name_log = fil[:-4] + '_LOG' logger = logging.getLogger(name_log) - hdlr = logging.FileHandler(name_log) + hdlr = logging.FileHandler(name_log) # We don't use the caiman logger here b/c we're saving to files formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s') hdlr.setFormatter(formatter) diff --git a/caiman/utils/sbx_utils.py b/caiman/utils/sbx_utils.py index f349b9d0b..48bbba484 100644 --- a/caiman/utils/sbx_utils.py +++ b/caiman/utils/sbx_utils.py @@ -487,12 +487,14 @@ def _interpret_subindices(subindices: DimSubindices, dim_extent: int) -> tuple[I Given the extent of a dimension in the corresponding recording, obtain an iterable over subindices and the step size (or 0 if the step size is not uniform). """ + logger = logging.getLogger("caiman") + if isinstance(subindices, slice): iterable_elements = range(dim_extent)[subindices] skip = iterable_elements.step if subindices.stop is not None and np.isfinite(subindices.stop) and subindices.stop > dim_extent: - logging.warning(f'Only {dim_extent} frames or pixels available to load ' + + logger.warning(f'Only {dim_extent} frames or pixels available to load ' + f'(requested up to {subindices.stop})') else: iterable_elements = subindices diff --git a/caiman/utils/stats.py b/caiman/utils/stats.py index a5688fe36..cf1e3d596 100644 --- a/caiman/utils/stats.py +++ b/caiman/utils/stats.py @@ -172,6 +172,8 @@ def df_percentile(inputData, axis=None): If errors occur, return fallback values """ + logger = logging.getLogger("caiman") + if axis is not None: def fnc(x): @@ -191,7 +193,7 @@ def fnc(x): err = False except ValueError: err_count += 1 - logging.warning(f"kde() failure {err_count}. Concatenating traces and recomputing.") + logger.warning(f"kde() failure {err_count}. Concatenating traces and recomputing.") if not isinstance(inputData, list): inputData = inputData.tolist() inputData += inputData @@ -199,10 +201,11 @@ def fnc(x): # There are three ways the above calculation can go wrong. # For each case: just use median. # if cdf was never defined, it means kde never ran without error + # TODO: Review if we can just look at err instead of this weird try try: cdf except NameError: - logging.warning('Max err count reached. Reverting to median.') + logger.warning('Max err count reached. Reverting to median.') data_prct = 50 val = np.median(np.array(inputData)) else: @@ -210,12 +213,12 @@ def fnc(x): val = mesh[np.argmax(density)] if data_prct >= 100 or data_prct < 0: - logging.warning('Invalid percentile (<0 or >100) computed. Reverting to median.') + logger.warning('Invalid percentile (<0 or >100) computed. Reverting to median.') data_prct = 50 val = np.median(np.array(inputData)) if np.isnan(data_prct): - logging.warning('NaN percentile computed. Reverting to median.') + logger.warning('NaN percentile computed. Reverting to median.') data_prct = 50 val = np.median(np.array(inputData)) @@ -299,9 +302,10 @@ def csc_column_remove(A, ind): ind: iterable[int] list or np.array with columns to be removed """ + logger = logging.getLogger("caiman") d1, d2 = A.shape if 'csc_matrix' not in str(type(A)): # FIXME - logging.warning("Original matrix not in csc_format. Converting it" + " anyway.") + logger.warning("Original matrix not in csc_format. Converting it anyway.") A = scipy.sparse.csc_matrix(A) indptr = A.indptr ind_diff = np.diff(A.indptr).tolist() diff --git a/caiman/utils/utils.py b/caiman/utils/utils.py index e0dd46f15..599d9b60e 100644 --- a/caiman/utils/utils.py +++ b/caiman/utils/utils.py @@ -61,6 +61,7 @@ def download_demo(name:str='Sue_2x_3000_40_-46.tif', save_folder:str='') -> str: Raise: WrongFolder Exception """ + logger = logging.getLogger("caiman") file_dict = { 'Sue_2x_3000_40_-46.tif': 'https://caiman.flatironinstitute.org/~neuro/caiman_downloadables/Sue_2x_3000_40_-46.tif', @@ -93,8 +94,8 @@ def download_demo(name:str='Sue_2x_3000_40_-46.tif', save_folder:str='') -> str: path_movie = os.path.join(base_folder, save_folder, name) if not os.path.exists(path_movie): url = file_dict[name] - logging.info(f"downloading {name} with urllib") - logging.info(f"GET {url} HTTP/1.1") + logger.info(f"downloading {name} with urllib") + logger.info(f"GET {url} HTTP/1.1") if os.name == 'nt': urllib_context = ssl.create_default_context(cafile = certifi.where() ) # On windows we need to avoid the limited default cert store else: @@ -102,7 +103,7 @@ def download_demo(name:str='Sue_2x_3000_40_-46.tif', save_folder:str='') -> str: try: f = urlopen(url, context=urllib_context) except: - logging.info(f"Trying to set user agent to download demo") + logger.info(f"Trying to set user agent to download demo") from urllib.request import Request req = Request(url, headers={'User-Agent': 'Mozilla/5.0'}) f = urlopen(req, context=urllib_context) @@ -111,7 +112,7 @@ def download_demo(name:str='Sue_2x_3000_40_-46.tif', save_folder:str='') -> str: with open(path_movie, "wb") as code: code.write(data) else: - logging.info(f"File {name} already downloaded") + logger.info(f"File {name} already downloaded") else: raise Exception('Cannot find the example_movies folder in your caiman_datadir - did you make one with caimanmanager?') return path_movie @@ -134,9 +135,7 @@ def download_model(name:str='mask_rcnn', save_folder:str='') -> str: Raise: WrongFolder Exception """ - - #\bug - #\warning + logger = logging.getLogger("caiman") file_dict = {'mask_rcnn': 'https://caiman.flatironinstitute.org/~neuro/caiman_downloadables/model/mask_rcnn_neurons_0040.h5'} base_folder = os.path.join(caiman_datadir(), 'model') @@ -146,8 +145,8 @@ def download_model(name:str='mask_rcnn', save_folder:str='') -> str: path_movie = os.path.join(base_folder, save_folder, name) if not os.path.exists(path_movie): url = file_dict[name] - logging.info(f"downloading {name} with urllib") - logging.info(f"GET {url} HTTP/1.1") + logger.info(f"downloading {name} with urllib") + logger.info(f"GET {url} HTTP/1.1") if os.name == 'nt': urllib_context = ssl.create_default_context(cafile = certifi.where() ) # On windows we need to avoid the limited default cert store else: @@ -155,7 +154,7 @@ def download_model(name:str='mask_rcnn', save_folder:str='') -> str: try: f = urlopen(url, context=urllib_context) except: - logging.info(f"Trying to set user agent to download demo") + logger.info(f"Trying to set user agent to download demo") from urllib.request import Request req = Request(url, headers={'User-Agent': 'Mozilla/5.0'}) f = urlopen(req, context=urllib_context) @@ -164,7 +163,7 @@ def download_model(name:str='mask_rcnn', save_folder:str='') -> str: with open(path_movie, "wb") as code: code.write(data) else: - logging.info("File " + str(name) + " already downloaded") + logger.info("File " + str(name) + " already downloaded") else: raise Exception('Cannot find the model folder in your caiman_datadir - did you make one with caimanmanager?') return path_movie @@ -223,6 +222,7 @@ def get_image_description_SI(fname:str) -> list: Returns: image_description: information of the image """ + logger = logging.getLogger("caiman") image_descriptions = [] @@ -230,7 +230,7 @@ def get_image_description_SI(fname:str) -> list: for idx, pag in enumerate(tf.pages): if idx % 1000 == 0: - logging.debug(idx) # progress report to the user + logger.debug(idx) # progress report to the user field = pag.tags['image_description'].value image_descriptions.append(si_parse(field)) @@ -374,6 +374,7 @@ def apply_magic_wand(A, gSig, dims, A_thr=None, coms=None, dview=None, masks: ndarray binary masks """ + logger = logging.getLogger("caiman") if (A_thr is None) and (coms is None): import pdb @@ -399,7 +400,7 @@ def apply_magic_wand(A, gSig, dims, A_thr=None, coms=None, dview=None, params.append([A.tocsc()[:,idx].toarray().reshape(dims, order='F'), coms[idx], min_radius, max_radius, roughness, zoom_factor, center_range]) - logging.debug(len(params)) + logger.debug(len(params)) if dview is not None: masks = np.array(list(dview.map(cell_magic_wand_wrapper, params))) @@ -459,6 +460,7 @@ def recursively_save_dict_contents_to_group(h5file:h5py.File, path:str, dic:dict dic: dictionary dictionary to save ''' + logger = logging.getLogger("caiman") # argument type checking if not isinstance(dic, dict): raise ValueError("must provide a dictionary") @@ -475,7 +477,7 @@ def recursively_save_dict_contents_to_group(h5file:h5py.File, path:str, dic:dict if key == 'g': if item is None: item = 0 - logging.info(key + ' is an object type') + logger.info(key + ' is an object type') try: item = np.array(list(item)) except: @@ -485,7 +487,7 @@ def recursively_save_dict_contents_to_group(h5file:h5py.File, path:str, dic:dict if key in ['groups', 'idx_tot', 'ind_A', 'Ab_epoch', 'coordinates', 'loaded_model', 'optional_outputs', 'merged_ROIs', 'tf_in', 'tf_out', 'empty_merged']: - logging.info(f'Key {key} is not saved') + logger.info(f'Key {key} is not saved') continue if isinstance(item, (list, tuple)): @@ -503,12 +505,12 @@ def recursively_save_dict_contents_to_group(h5file:h5py.File, path:str, dic:dict elif isinstance(item, (np.int64, np.int32, np.float64, float, np.float32, int)): # TODO In the future we may store all scalars, including these, as attributes too, although strings suffer the most from being stored as datasets h5file[path + key] = item - logging.debug(f'Saving numeric {path + key}') + logger.debug(f'Saving numeric {path + key}') if not h5file[path + key][()] == item: raise ValueError(f'Error (v {h5py.__version__}) while saving numeric {path + key}: assigned value {h5file[path + key][()]} does not match intended value {item}') # save numpy arrays elif isinstance(item, np.ndarray): - logging.debug(f'Saving {key}') + logger.debug(f'Saving {key}') try: h5file[path + key] = item except: @@ -520,7 +522,7 @@ def recursively_save_dict_contents_to_group(h5file:h5py.File, path:str, dic:dict elif isinstance(item, dict): recursively_save_dict_contents_to_group(h5file, path + key + '/', item) elif 'sparse' in str(type(item)): - logging.info(key + ' is sparse ****') + logger.info(key + ' is sparse ****') h5file[path + key + '/data'] = item.tocsc().data h5file[path + key + '/indptr'] = item.tocsc().indptr h5file[path + key + '/indices'] = item.tocsc().indices @@ -530,7 +532,7 @@ def recursively_save_dict_contents_to_group(h5file:h5py.File, path:str, dic:dict h5file[path + key] = 'NoneType' elif key in ['dims', 'medw', 'sigma_smooth_snmf', 'dxy', 'max_shifts', 'strides', 'overlaps', 'gSig']: - logging.info(key + ' is a tuple ****') + logger.info(f'{key} is a tuple ****') h5file[path + key] = np.array(item) elif type(item).__name__ in ['CNMFParams', 'Estimates']: # parameter object recursively_save_dict_contents_to_group(h5file, path + key + '/', item.__dict__) diff --git a/demos/general/demo_OnACID.py b/demos/general/demo_OnACID.py index 1951e6375..ca56b41d1 100755 --- a/demos/general/demo_OnACID.py +++ b/demos/general/demo_OnACID.py @@ -26,17 +26,18 @@ def main(): cfg = handle_args() + # Set up logging + logger = logging.getLogger("caiman") + logger.setLevel(logging.INFO) # Or another loglevel + logfmt = logging.Formatter("[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s") if cfg.logfile: - logging.basicConfig(format= - "[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s", - level=logging.INFO, - filename=cfg.logfile) - # You can make the output more or less verbose by setting level to logging.DEBUG, logging.INFO, logging.WARNING, or logging.ERROR + handler = logging.FileHandler(cfg.logfile) else: - logging.basicConfig(format= - "[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s", - level=logging.INFO) + handler = logging.StreamHandler() + + handler.setFormatter(logfmt) + logger.addHandler(handler) opts = cnmf.params.CNMFParams(params_from_file=cfg.configfile) diff --git a/demos/general/demo_OnACID_mesoscope.py b/demos/general/demo_OnACID_mesoscope.py index 620a8b1b9..a3afe5d57 100755 --- a/demos/general/demo_OnACID_mesoscope.py +++ b/demos/general/demo_OnACID_mesoscope.py @@ -35,17 +35,18 @@ def main(): cfg = handle_args() + # Set up logging + logger = logging.getLogger("caiman") + logger.setLevel(logging.INFO) # Or another loglevel + logfmt = logging.Formatter("[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s") if cfg.logfile: - logging.basicConfig(format= - "[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s", - level=logging.INFO, - filename=cfg.logfile) - # You can make the output more or less verbose by setting level to logging.DEBUG, logging.INFO, logging.WARNING, or logging.ERROR + handler = logging.FileHandler(cfg.logfile) else: - logging.basicConfig(format= - "[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s", - level=logging.INFO) + handler = logging.StreamHandler() + + handler.setFormatter(logfmt) + logger.addHandler(handler) opts = cnmf.params.CNMFParams(params_from_file=cfg.configfile) diff --git a/demos/general/demo_behavior.py b/demos/general/demo_behavior.py index 19c46224e..6d441bb06 100755 --- a/demos/general/demo_behavior.py +++ b/demos/general/demo_behavior.py @@ -28,17 +28,18 @@ def main(): cfg = handle_args() + # Set up logging + logger = logging.getLogger("caiman") + logger.setLevel(logging.INFO) # Or another loglevel + logfmt = logging.Formatter("[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s") if cfg.logfile: - logging.basicConfig(format= - "[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s", - level=logging.INFO, - filename=cfg.logfile) - # You can make the output more or less verbose by setting level to logging.DEBUG, logging.INFO, logging.WARNING, or logging.ERROR + handler = logging.FileHandler(cfg.logfile) else: - logging.basicConfig(format= - "[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s", - level=logging.INFO) + handler = logging.StreamHandler() + + handler.setFormatter(logfmt) + logger.addHandler(handler) if cfg.input is None: # If no input is specified, use sample data, downloading if necessary diff --git a/demos/general/demo_caiman_basic.py b/demos/general/demo_caiman_basic.py index 255e5fb00..4731a7a18 100755 --- a/demos/general/demo_caiman_basic.py +++ b/demos/general/demo_caiman_basic.py @@ -35,17 +35,18 @@ def main(): cfg = handle_args() + # Set up logging + logger = logging.getLogger("caiman") + logger.setLevel(logging.INFO) # Or another loglevel + logfmt = logging.Formatter("[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s") if cfg.logfile: - logging.basicConfig(format= - "[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s", - level=logging.INFO, - filename=cfg.logfile) - # You can make the output more or less verbose by setting level to logging.DEBUG, logging.INFO, logging.WARNING, or logging.ERROR + handler = logging.FileHandler(cfg.logfile) else: - logging.basicConfig(format= - "[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s", - level=logging.INFO) + handler = logging.StreamHandler() + + handler.setFormatter(logfmt) + logger.addHandler(handler) opts = params.CNMFParams(params_from_file=cfg.configfile) diff --git a/demos/general/demo_pipeline.py b/demos/general/demo_pipeline.py index 028b9c55a..57ef191c4 100755 --- a/demos/general/demo_pipeline.py +++ b/demos/general/demo_pipeline.py @@ -38,17 +38,18 @@ def main(): cfg = handle_args() + # Set up logging + logger = logging.getLogger("caiman") + logger.setLevel(logging.INFO) # Or another loglevel + logfmt = logging.Formatter("[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s") if cfg.logfile: - logging.basicConfig(format= - "[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s", - level=logging.INFO, - filename=cfg.logfile) - # You can make the output more or less verbose by setting level to logging.DEBUG, logging.INFO, logging.WARNING, or logging.ERROR + handler = logging.FileHandler(cfg.logfile) else: - logging.basicConfig(format= - "[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s", - level=logging.INFO) + handler = logging.StreamHandler() + + handler.setFormatter(logfmt) + logger.addHandler(handler) # First set up some parameters for data and motion correction opts = params.CNMFParams(params_from_file=cfg.configfile) diff --git a/demos/general/demo_pipeline_NWB.py b/demos/general/demo_pipeline_NWB.py index 956f632b1..f2983d2fb 100755 --- a/demos/general/demo_pipeline_NWB.py +++ b/demos/general/demo_pipeline_NWB.py @@ -36,17 +36,18 @@ def main(): cfg = handle_args() + # Set up logging + logger = logging.getLogger("caiman") + logger.setLevel(logging.INFO) # Or another loglevel + logfmt = logging.Formatter("[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s") if cfg.logfile: - logging.basicConfig(format= - "[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s", - level=logging.INFO, - filename=cfg.logfile) - # You can make the output more or less verbose by setting level to logging.DEBUG, logging.INFO, logging.WARNING, or logging.ERROR + handler = logging.FileHandler(cfg.logfile) else: - logging.basicConfig(format= - "[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s", - level=logging.INFO) + handler = logging.StreamHandler() + + handler.setFormatter(logfmt) + logger.addHandler(handler) opts = params.CNMFParams(params_from_file=cfg.configfile) if cfg.input is not None: diff --git a/demos/general/demo_pipeline_cnmfE.py b/demos/general/demo_pipeline_cnmfE.py index 3b3d102bf..49def303d 100755 --- a/demos/general/demo_pipeline_cnmfE.py +++ b/demos/general/demo_pipeline_cnmfE.py @@ -30,17 +30,18 @@ def main(): cfg = handle_args() + # Set up logging + logger = logging.getLogger("caiman") + logger.setLevel(logging.INFO) # Or another loglevel + logfmt = logging.Formatter("[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s") if cfg.logfile: - logging.basicConfig(format= - "[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s", - level=logging.INFO, - filename=cfg.logfile) - # You can make the output more or less verbose by setting level to logging.DEBUG, logging.INFO, logging.WARNING, or logging.ERROR + handler = logging.FileHandler(cfg.logfile) else: - logging.basicConfig(format= - "[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s", - level=logging.INFO) + handler = logging.StreamHandler() + + handler.setFormatter(logfmt) + logger.addHandler(handler) opts = params.CNMFParams(params_from_file=cfg.configfile) diff --git a/demos/general/demo_pipeline_voltage_imaging.py b/demos/general/demo_pipeline_voltage_imaging.py index 20ad228e1..6ac39faed 100755 --- a/demos/general/demo_pipeline_voltage_imaging.py +++ b/demos/general/demo_pipeline_voltage_imaging.py @@ -36,17 +36,20 @@ def main(): cfg = handle_args() + # Set up logging + logger = logging.getLogger("caiman") + logger.setLevel(logging.INFO) # Or another loglevel + logfmt = logging.Formatter("[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s") + if cfg.logfile: - logging.basicConfig(format= - "[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s", - level=logging.INFO, - filename=cfg.logfile) - # You can make the output more or less verbose by setting level to logging.DEBUG, logging.INFO, logging.WARNING, or logging.ERROR + handler = logging.FileHandler(cfg.logfile) else: - logging.basicConfig(format= - "[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s", - level=logging.INFO) + handler = logging.StreamHandler() + + handler.setFormatter(logfmt) + logger.addHandler(handler) + # Figure out what data we're working on if cfg.input is None: # If no input is specified, use sample data, downloading if necessary fnames = [download_demo('demo_voltage_imaging.hdf5', 'volpy')] # XXX do we need to use a separate directory? diff --git a/docs/source/Getting_Started.rst b/docs/source/Getting_Started.rst index 1294ecd7c..c9e92033d 100644 --- a/docs/source/Getting_Started.rst +++ b/docs/source/Getting_Started.rst @@ -228,25 +228,38 @@ of the file creating the log, the process ID, and the actual log message. While logging is especially helpful when running code on a server, it can also be helpful to get feedback locally, either to audit progress or diagnose problems when debugging. If you set -this feature up by running the following cell, the logs will by default go to console. If you want to direct +this feature up by running the following code, the logs will by default go to console. If you want to direct your log to file (which you can indicate with ``use_logfile = True``), then it will automatically be directed to your ``caiman_data/temp`` directory as defined in the ``caiman.paths`` module. You can set another path manually by changing the argument to the ``filename`` parameter in ``basicConfig()``. +If you want to log to normal outputs (cells in Jupyter, STDOUT in scripts), you can set that up by running this: + +:: + + logger = logging.getLogger("caiman") + logger.setLevel(logging.WARNING) + handler = logging.StreamHandler() + log_format = logging.Formatter("%(relativeCreated)12d [%(filename)s:%(funcName)10s():%(lineno)s] [%(process)d] %(message)s") + handler.setFormatter(log_format) + logger.addHandler(handler) + +If you prefer to log to a file, you can set that up by running this: + :: - use_logfile = True # set to True to log to file - if use_logfile: - current_datetime = datetime.datetime.now().strftime("_%Y%m%d_%H%M%S") - log_filename = 'demo_pipeline' + current_datetime + '.log' - log_path = Path(cm.paths.get_tempdir()) / log_filename - print(f"Will save logging data to {log_path}") - else: - log_path = None - log_format = "{asctime} - {levelname} - [{filename} {funcName}() {lineno}] - pid {process} - {message}" - logging.basicConfig(format=log_format, - filename=log_path, - level=logging.WARNING, style="{") #DEBUG, INFO, WARNING, ERROR, CRITICAL + logger = logging.getLogger("caiman") + logger.setLevel(logging.WARNING) + # Set path to logfile + current_datetime = datetime.datetime.now().strftime("_%Y%m%d_%H%M%S") + log_filename = 'demo_pipeline' + current_datetime + '.log' + log_path = Path(cm.paths.get_tempdir()) / log_filename + # Done with path stuff + handler = logging.FileHandler(log_path) + log_format = logging.Formatter("%(relativeCreated)12d [%(filename)s:%(funcName)10s():%(lineno)s] [%(process)d] %(message)s") + handler.setFormatter(log_format) + logger.addHandler(handler) + Caiman makes extensive use of the log system, and we have place many loggers interleaved throughough the code to aid in debugging. If you hit a bug, it is often helpful to set your debugging level to ``DEBUG`` so you can see what @@ -256,7 +269,7 @@ Once you have configured your logger, you can change the level (say, from ``WARN :: - logging.getLogger().setLevel(logging.DEBUG) + logging.getLogger("caiman").setLevel(logging.DEBUG)