-
Notifications
You must be signed in to change notification settings - Fork 369
/
10util.c
288 lines (208 loc) · 8.56 KB
/
10util.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/*
BLIS
An object-based framework for developing high-performance BLAS-like
libraries.
Copyright (C) 2014, The University of Texas at Austin
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of The University of Texas nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include "blis.h"
int main( int argc, char** argv )
{
obj_t norm1, normi, normf;
obj_t x, y, a, b, c, d, e, f, g;
num_t dt;
dim_t m, n;
inc_t rs, cs;
//
// This file demonstrates working with vector and matrix objects in the
// context of various utility operations.
//
//
// Example 1: Compute various vector norms.
//
printf( "\n#\n# -- Example 1 --\n#\n\n" );
// Create a few matrices to work with.
m = 1; n = 5; rs = 0; cs = 0;
bli_obj_create( BLIS_DOUBLE, m, n, rs, cs, &x );
bli_obj_create( BLIS_DCOMPLEX, m, n, rs, cs, &y );
// Let's also create some scalar objects to hold the norms. Note that when
// computing the norm alpha of a vector 'x', the datatype of alpha must be
// equal to the real projection of the datatype of 'x'.
dt = BLIS_DOUBLE;
bli_obj_create_1x1( dt, &norm1 );
bli_obj_create_1x1( dt, &normi );
bli_obj_create_1x1( dt, &normf );
// Initialize the vectors to random values.
bli_randv( &x );
bli_randv( &y );
bli_printm( "x:", &x, "%4.1f", "" );
// Compute the one, infinity, and frobenius norms of 'x'.
bli_norm1v( &x, &norm1 );
bli_normiv( &x, &normi );
bli_normfv( &x, &normf );
bli_printm( "x: 1-norm:", &norm1, "%4.1f", "" );
bli_printm( "x: infinity norm:", &normi, "%4.1f", "" );
bli_printm( "x: frobenius norm:", &normf, "%4.1f", "" );
bli_printm( "y:", &y, "%4.1f", "" );
// Compute the one, infinity, and frobenius norms of 'y'. Note that we
// can reuse the same scalars from before for computing norms of
// dcomplex matrices, since the real projection of dcomplex is double.
bli_norm1v( &y, &norm1 );
bli_normiv( &y, &normi );
bli_normfv( &y, &normf );
bli_printm( "y: 1-norm:", &norm1, "%4.1f", "" );
bli_printm( "y: infinity norm:", &normi, "%4.1f", "" );
bli_printm( "y: frobenius norm:", &normf, "%4.1f", "" );
//
// Example 2: Compute various matrix norms.
//
printf( "\n#\n# -- Example 2 --\n#\n\n" );
// Create a few matrices to work with.
m = 5; n = 6; rs = 0; cs = 0;
bli_obj_create( BLIS_DOUBLE, m, n, rs, cs, &a );
bli_obj_create( BLIS_DCOMPLEX, m, n, rs, cs, &b );
// Initialize the matrices to random values.
bli_randm( &a );
bli_randm( &b );
bli_printm( "a:", &a, "%4.1f", "" );
// Compute the one, infinity, and frobenius norms of 'a'.
bli_norm1m( &a, &norm1 );
bli_normim( &a, &normi );
bli_normfm( &a, &normf );
bli_printm( "a: 1-norm:", &norm1, "%4.1f", "" );
bli_printm( "a: infinity norm:", &normi, "%4.1f", "" );
bli_printm( "a: frobenius norm:", &normf, "%4.1f", "" );
bli_printm( "b:", &b, "%4.1f", "" );
// Compute the one-norm of 'b'.
bli_norm1m( &b, &norm1 );
bli_normim( &b, &normi );
bli_normfm( &b, &normf );
bli_printm( "b: 1-norm:", &norm1, "%4.1f", "" );
bli_printm( "b: infinity norm:", &normi, "%4.1f", "" );
bli_printm( "b: frobenius norm:", &normf, "%4.1f", "" );
//
// Example 3: Make a real matrix explicitly symmetric (or Hermitian).
//
printf( "\n#\n# -- Example 3 --\n#\n\n" );
// Create a few matrices to work with.
m = 4; n = 4; rs = 0; cs = 0;
bli_obj_create( BLIS_DOUBLE, m, n, rs, cs, &c );
bli_obj_create( BLIS_DOUBLE, m, n, rs, cs, &d );
// Initialize all of 'c' to -1.0 to simulate junk values.
bli_setm( &BLIS_MINUS_ONE, &c );
// Set the structure and uplo of 'c'.
bli_obj_set_struc( BLIS_SYMMETRIC, &c );
bli_obj_set_uplo( BLIS_LOWER, &c );
// Randomize the lower triangle of 'c'.
bli_randm( &c );
bli_printm( "c (initial state):", &c, "%4.1f", "" );
// mksymm on a real matrix transposes the stored triangle into the
// unstored triangle, making the matrix densely symmetric.
bli_mksymm( &c );
bli_printm( "c (after mksymm on lower triangle):", &c, "%4.1f", "" );
// Digression: Most people think only of complex matrices as being able
// to be complex. However, in BLIS, we define Hermitian operations on
// real matrices, too--they are simply equivalent to the corresponding
// symmetric operation. For example, when we make a real matrix explicitly
// Hermitian, the result is indistinguishable from making it symmetric.
// Initialize all of 'd' to -1.0 to simulate junk values.
bli_setm( &BLIS_MINUS_ONE, &d );
bli_obj_set_struc( BLIS_HERMITIAN, &d );
bli_obj_set_uplo( BLIS_LOWER, &d );
// Randomize the lower triangle of 'd'.
bli_randm( &d );
bli_printm( "d (initial state):", &d, "%4.1f", "" );
// mkherm on a real matrix behaves the same as mksymm, as there are no
// imaginary elements to conjugate.
bli_mkherm( &d );
bli_printm( "d (after mkherm on lower triangle):", &d, "%4.1f", "" );
//
// Example 4: Make a complex matrix explicitly symmetric or Hermitian.
//
printf( "\n#\n# -- Example 4 --\n#\n\n" );
// Create a few matrices to work with.
m = 4; n = 4; rs = 0; cs = 0;
bli_obj_create( BLIS_DCOMPLEX, m, n, rs, cs, &e );
bli_obj_create( BLIS_DCOMPLEX, m, n, rs, cs, &f );
// Initialize all of 'e' to -1.0 to simulate junk values.
bli_setm( &BLIS_MINUS_ONE, &e );
// Set the structure and uplo of 'e'.
bli_obj_set_struc( BLIS_SYMMETRIC, &e );
bli_obj_set_uplo( BLIS_UPPER, &e );
// Randomize the upper triangle of 'e'.
bli_randm( &e );
bli_printm( "e (initial state):", &e, "%4.1f", "" );
// mksymm on a complex matrix transposes the stored triangle into the
// unstored triangle.
bli_mksymm( &e );
bli_printm( "e (after mksymm):", &e, "%4.1f", "" );
// Initialize all of 'f' to -1.0 to simulate junk values.
bli_setm( &BLIS_MINUS_ONE, &f );
// Set the structure and uplo of 'f'.
bli_obj_set_struc( BLIS_HERMITIAN, &f );
bli_obj_set_uplo( BLIS_UPPER, &f );
// Randomize the upper triangle of 'f'.
bli_randm( &f );
bli_printm( "f (initial state):", &f, "%4.1f", "" );
// mkherm on a complex matrix transposes and conjugates the stored
// triangle into the unstored triangle.
bli_mkherm( &f );
bli_printm( "f (after mkherm):", &f, "%4.1f", "" );
//
// Example 5: Make a real matrix explicitly triangular.
//
printf( "\n#\n# -- Example 5 --\n#\n\n" );
// Create a few matrices to work with.
m = 5; n = 5; rs = 0; cs = 0;
bli_obj_create( BLIS_DOUBLE, m, n, rs, cs, &g );
// Initialize all of 'g' to -1.0 to simulate junk values.
bli_setm( &BLIS_MINUS_ONE, &g );
// Set the structure and uplo of 'g'.
bli_obj_set_struc( BLIS_TRIANGULAR, &g );
bli_obj_set_uplo( BLIS_LOWER, &g );
// Randomize the lower triangle of 'g'.
bli_randm( &g );
bli_printm( "g (initial state):", &g, "%4.1f", "" );
// mktrim does not explicitly copy any data, since presumably the stored
// triangle already contains the data of interest. However, mktrim does
// explicitly writes zeros to the unstored region.
bli_mktrim( &g );
bli_printm( "g (after mktrim):", &g, "%4.1f", "" );
// Free the objects.
bli_obj_free( &norm1 );
bli_obj_free( &normi );
bli_obj_free( &normf );
bli_obj_free( &x );
bli_obj_free( &y );
bli_obj_free( &a );
bli_obj_free( &b );
bli_obj_free( &c );
bli_obj_free( &d );
bli_obj_free( &e );
bli_obj_free( &f );
bli_obj_free( &g );
return 0;
}
// -----------------------------------------------------------------------------