-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_clip.py
executable file
·658 lines (595 loc) · 24.3 KB
/
run_clip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
#!/usr/bin/env python
# coding=utf-8
# Copyright 2022 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training a CLIP like dual encoder models using text and vision encoders in the library.
The script can be used to train CLIP like models for languages other than English by using
a text encoder pre-trained in the desired language. Currently this script supports the following vision
and text models:
Vision models: ViT(https://huggingface.co/models?filter=vit), CLIP (https://huggingface.co/models?filter=clip)
Text models: BERT, ROBERTa (https://huggingface.co/models?filter=fill-mask)
"""
import pdb
import wandb
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import torch
from datasets import load_dataset
from PIL import Image
from torchvision.io import ImageReadMode, read_image
from torchvision.transforms import CenterCrop, ConvertImageDtype, Normalize, Resize
from torchvision.transforms.functional import InterpolationMode
import transformers
from transformers import (
AutoImageProcessor,
AutoModel,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
from vit_ft import compute_metrics
from src.utils_training import _read_image
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
# check_min_version("4.30.0.dev0")
require_version(
"datasets>=1.8.0",
"To fix: pip install -r examples/pytorch/contrastive-image-text/requirements.txt",
)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: str = field(
metadata={
"help": "Path to pretrained model or model identifier from huggingface.co/models"
},
)
config_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained config name or path if not the same as model_name"
},
)
tokenizer_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained tokenizer name or path if not the same as model_name"
},
)
image_processor_name: str = field(
default=None, metadata={"help": "Name or path of preprocessor config."}
)
cache_dir: Optional[str] = field(
default=None,
metadata={
"help": "Where do you want to store the pretrained models downloaded from s3"
},
)
model_revision: str = field(
default="main",
metadata={
"help": "The specific model version to use (can be a branch name, tag name or commit id)."
},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={
"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."
},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
freeze_vision_model: bool = field(
default=False,
metadata={"help": "Whether to freeze the vision model parameters or not."},
)
freeze_text_model: bool = field(
default=False,
metadata={"help": "Whether to freeze the text model parameters or not."},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None,
metadata={"help": "The name of the dataset to use (via the datasets library)."},
)
dataset_config_name: Optional[str] = field(
default=None,
metadata={
"help": "The configuration name of the dataset to use (via the datasets library)."
},
)
data_dir: Optional[str] = field(
default=None, metadata={"help": "The data directory containing input files."}
)
image_column: Optional[str] = field(
default="image_path",
metadata={
"help": "The name of the column in the datasets containing the full image file paths."
},
)
caption_column: Optional[str] = field(
default="caption",
metadata={
"help": "The name of the column in the datasets containing the image captions."
},
)
train_file: Optional[str] = field(
default=None,
metadata={"help": "The input training data file (a jsonlines file)."},
)
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file (a jsonlines file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input testing data file (a jsonlines file)."},
)
max_seq_length: Optional[int] = field(
default=128,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
overwrite_cache: bool = field(
default=False,
metadata={"help": "Overwrite the cached training and evaluation sets"},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
def __post_init__(self):
if (
self.dataset_name is None
and self.train_file is None
and self.validation_file is None
):
raise ValueError(
"Need either a dataset name or a training/validation file."
)
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in [
"csv",
"json",
], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in [
"csv",
"json",
], "`validation_file` should be a csv or a json file."
# if self.validation_file is not None:
# extension = self.validation_file.split(".")[-1]
# assert extension == "json", "`validation_file` should be a json file."
dataset_name_mapping = {
"image_caption_dataset.py": ("image_path", "caption"),
}
# We use torchvision for faster image pre-processing. The transforms are implemented as nn.Module,
# so we jit it to be faster.
class Transform(torch.nn.Module):
def __init__(self, image_size, mean, std):
super().__init__()
self.transforms = torch.nn.Sequential(
Resize(
[image_size], interpolation=InterpolationMode.BICUBIC, antialias=True
),
CenterCrop(image_size),
ConvertImageDtype(torch.float),
Normalize(mean, std),
)
def forward(self, x) -> torch.Tensor:
"""`x` should be an instance of `PIL.Image.Image`"""
with torch.no_grad():
x = self.transforms(x)
return x
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
input_ids = torch.tensor(
[example["input_ids"] for example in examples], dtype=torch.long
)
attention_mask = torch.tensor(
[example["attention_mask"] for example in examples], dtype=torch.long
)
return {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
"return_loss": True,
}
def main():
# 1. Parse input arguments
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser(
(ModelArguments, DataTrainingArguments, TrainingArguments)
)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1])
)
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_clip", model_args, data_args)
# 2. Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# 3. Detecting last checkpoint and eventualy continue from last checkpoint
last_checkpoint = None
if (
os.path.isdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif (
last_checkpoint is not None and training_args.resume_from_checkpoint is None
):
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# 4. Load dataset
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files this script will use the first column for the full image path and the second column for the
# captions (unless you specify column names for this with the `image_column` and `caption_column` arguments).
#
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
keep_in_memory=False,
data_dir=data_args.data_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
dataset = load_dataset(
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# 5. Load pretrained model, tokenizer, and image processor
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
# Load image_processor, in this script we only use this to get the mean and std for normalization.
image_processor = AutoImageProcessor.from_pretrained(
model_args.image_processor_name or model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model = AutoModel.from_pretrained(
model_args.model_name_or_path,
n_labels=2,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
config = model.config
def _freeze_params(module):
for param in module.parameters():
param.requires_grad = False
if model_args.freeze_vision_model:
_freeze_params(model.vision_model)
if model_args.freeze_text_model:
_freeze_params(model.text_model)
# set seed for torch dataloaders
set_seed(training_args.seed)
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
if training_args.do_train:
column_names = dataset["train"].column_names
elif training_args.do_eval:
column_names = dataset["validation"].column_names
elif training_args.do_predict:
column_names = dataset["test"].column_names
else:
logger.info(
"There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`."
)
return
# 6. Get the column names for input/target.
dataset_columns = dataset_name_mapping.get(data_args.dataset_name, None)
if data_args.image_column is None:
image_column = (
dataset_columns[0] if dataset_columns is not None else column_names[0]
)
else:
image_column = data_args.image_column
if image_column not in column_names:
raise ValueError(
f"--image_column' value '{data_args.image_column}' needs to be one of: {', '.join(column_names)}"
)
if data_args.caption_column is None:
caption_column = (
dataset_columns[1] if dataset_columns is not None else column_names[1]
)
else:
caption_column = data_args.caption_column
if caption_column not in column_names:
raise ValueError(
f"--caption_column' value '{data_args.caption_column}' needs to be one of: {', '.join(column_names)}"
)
# 7. Preprocessing the datasets.
# Initialize torchvision transforms and jit it for faster processing.
image_transformations = Transform(
config.vision_config.image_size,
image_processor.image_mean,
image_processor.image_std,
)
image_transformations = torch.jit.script(image_transformations)
# Preprocessing the datasets.
# We need to tokenize input captions and transform the images.
def tokenize_captions(examples):
captions = list(examples[caption_column])
text_inputs = tokenizer(
captions,
max_length=data_args.max_seq_length,
padding="max_length",
truncation=True,
)
examples["input_ids"] = text_inputs.input_ids
examples["attention_mask"] = text_inputs.attention_mask
examples["labels"] = [
torch.as_tensor(np.array(image_row)) for image_row in examples["label"]
]
return examples
def transform_images(examples):
images = [
_read_image(image_file)
#read_image(image_file, mode=ImageReadMode.RGB)
for image_file in examples[image_column]
]
examples["pixel_values"] = [image_transformations(image) for image in images]
return examples
def filter_corrupt_images(examples):
"""remove problematic images"""
valid_images = []
for image_file in examples[image_column]:
try:
Image.open(image_file)
valid_images.append(True)
except Exception:
valid_images.append(False)
return valid_images
if training_args.do_train:
if "train" not in dataset:
raise ValueError("--do_train requires a train dataset")
train_dataset = dataset["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
pdb.set_trace()
rand_idx = np.random.randint(0, len(train_dataset), max_train_samples)
train_dataset = train_dataset.select(rand_idx)
train_dataset = train_dataset.filter(
filter_corrupt_images,
batched=True,
num_proc=data_args.preprocessing_num_workers,
)
train_dataset = train_dataset.map(
function=tokenize_captions,
batched=True,
remove_columns=[col for col in column_names if col != image_column],
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
# Transform images on the fly as doing it on the whole dataset takes too much time.
train_dataset.set_transform(transform_images)
if training_args.do_eval:
if "validation" not in dataset:
raise ValueError("--do_eval requires a train validation")
eval_dataset = dataset["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
eval_dataset = eval_dataset.filter(
filter_corrupt_images,
batched=True,
num_proc=data_args.preprocessing_num_workers,
)
eval_dataset = eval_dataset.map(
function=tokenize_captions,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=[
col for col in column_names if col not in [image_column, "label"]
],
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
# Transform images on the fly as doing it on the whole dataset takes too much time.
eval_dataset.set_transform(transform_images)
if training_args.do_predict:
if "test" not in dataset:
raise ValueError("--do_predict requires a test dataset")
test_dataset = dataset["test"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(test_dataset), data_args.max_eval_samples)
test_dataset = test_dataset.select(range(max_eval_samples))
test_dataset = test_dataset.filter(
filter_corrupt_images,
batched=True,
num_proc=data_args.preprocessing_num_workers,
)
test_dataset = test_dataset.map(
function=tokenize_captions,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=[col for col in column_names if col != image_column],
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on test dataset",
)
# Transform images on the fly as doing it on the whole dataset takes too much time.
test_dataset.set_transform(transform_images)
with wandb.init(
project="cnn_wildfire_households",
mode="online",
tags=["clip", "better_llm"],
group="clip_dual_enc",
):
# 8. Initalize our trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
# compute_metrics=compute_metrics,
data_collator=collate_fn,
)
# 9. Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir)
image_processor.save_pretrained(training_args.output_dir)
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
# 10. Evaluation
if training_args.do_eval:
metrics = trainer.evaluate()
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# 11. Write Training Stats and push to hub.
kwargs = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "contrastive-image-text-modeling",
}
if data_args.dataset_name is not None:
kwargs["dataset_tags"] = data_args.dataset_name
if data_args.dataset_config_name is not None:
kwargs["dataset_args"] = data_args.dataset_config_name
kwargs[
"dataset"
] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
else:
kwargs["dataset"] = data_args.dataset_name
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
if __name__ == "__main__":
main()