-
Notifications
You must be signed in to change notification settings - Fork 0
/
6) ProPer statistics.Rmd
637 lines (453 loc) · 19.6 KB
/
6) ProPer statistics.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
```{r clean start}
# clean start
rm(list = ls())
# load required libraries
library(tidyverse)
require(ggplot2)
require(tidyr)
require(Cairo)
require(dplyr)
require(seewave)
require(purrr)
require(zoo)
data_TV <- read_csv("data_tables/scores_df.csv")
```
```{r change inf to v}
# change "inf" to "v" in syll_label and focus
data_TV <- mutate(data_TV, syll_label = ifelse(syll_label == "inf-p", "v-p", syll_label))
data_TV <- mutate(data_TV, syll_label = ifelse(syll_label == "inf-u", "v-u", syll_label))
data_TV <- mutate(data_TV, focus = ifelse(focus == "(inf)", "(v)", focus))
data_TV <- mutate(data_TV, focus = ifelse(focus == "Inf", "v", focus))
```
```{r syllable, total and relative duration}
#autoSyll
data_TV <- mutate(data_TV, autoSyll_dur = autoSyll_end - autoSyll_start)
data_TV <- data_TV %>%
group_by(speaker) %>%
mutate(
auto_total_dur = sum(autoSyll_dur),
auto_rel_dur = autoSyll_dur / auto_total_dur * 5
)
#
#manual duration (from textgrids)
data_TV <- mutate(data_TV, syll_dur = syll_end - syll_start)
data_TV <- data_TV %>%
group_by(speaker) %>%
mutate(
total_dur = sum(syll_dur),
rel_dur = syll_dur / total_dur * 5
)
#
#### relative duration of periodicity ####
data_TV <- data_TV %>%
group_by(speaker) %>%
mutate(
total_periodicity = sum(intervalDuration),
rel_intervalDuration = intervalDuration / total_periodicity * 5
)
```
```{r new columns to be plotted later}
### focusCategory? Either (1) or (2)
# (1): Brackets = no
data_TV <- mutate(data_TV, focusCategory = ifelse(focus == "no" | focus == "(aux)" | focus == "(s)"| focus == "(v)"| focus == "(o)","no", focus))
```
```{r separate inquiries from C}
### Exclude "inquiry"s from C
# This works only, if there are no other comments than "inquiry", "British" or NA
data_TV_inq <- filter(data_TV, comment == "inquiry")
data_TV <- filter(data_TV, comment == "British" | is.na(comment))
```
```{r data noFocus}
### create data_noFocus
data_noFocus <- filter(data_TV, focusCategory == "no")
# save data_noFocus as table
# write.csv(data_noFocus, "data_tables/data_for_statistics_df.csv", row.names=FALSE)
### create data_onlyFocus
data_onlyFocus <- filter(data_TV, focusCategory != "no")
```
plot violins
```{r plot generator all clauses together}
## variables ##
measureNumber <- c(1,2,3,4,5,6, 7)[3]
# [1]=synchrony, [2]=delta f0, [3]=mass, [4]= absolute syllable duration (auto), [5]= relative syllable duration (auto),[6]=rel_intervalDuration, [7]= intervalDuration (duration in ms of periodic parts)
dataSetNumber <- c(1,2,3) [2]
# [1]=data_TV (all utterances), [2]= data_noFocus (all utterances without narrow focus (all or only strong focus excluded; depending on settings above)), [3]= data_onlyFocus (only utterances WITH narrow focus; strong (plus mild; depending on settings above))
##
dataSet <- data_TV
if (dataSetNumber == 2){
dataSet <- data_noFocus
}
if (dataSetNumber == 3){
dataSet <- data_onlyFocus
}
measure <- dataSet$sync_rel
if (measureNumber == 2) {measure <- dataSet$DeltaF0_rel}
if (measureNumber == 3) {measure <- dataSet$mass_rel}
if (measureNumber == 4) {measure <- dataSet$autoSyll_dur}
if (measureNumber == 5) {measure <- dataSet$auto_rel_dur}
if (measureNumber == 6) {measure <- dataSet$rel_intervalDuration}
if (measureNumber == 7) {measure <- dataSet$intervalDuration}
limMin <- c(-18, -100, 0, 0, 0, 0, 0)[measureNumber]
limMax <- c(18, 100, 2.5, 450, 2.5, 2.5, 450)[measureNumber]
normLine <- c(0, 0, 1, NA, 1, 1, NA) [measureNumber]
yLabel <- c("Relative synchrony", "Relative delta F0", "Relative mass", "Syllable duration (ms)", "Relative syllable duration", "Relative duration of periodic parts", "Duration of periodic parts (ms)") [measureNumber]
dataTitle <- "(all focus)"
if (dataSetNumber == 2){
dataTitle <- "(no narrow focus)"
}
if (dataSetNumber == 3){
dataTitle <- "(only all narrow focus)"
}
headTitle <- paste(yLabel, dataTitle)
## colors by clause
colors <- c("a" = "#FF0040", "b" = "#ffc40c", "c" = "#0090FF")
plotGenerator <- ggplot(dataSet, aes(x = factor(syll_label, level = c("aux-u", "s-u", "v-p", "v-u", "o-u")), y = measure))+
scale_x_discrete(labels= c("can\ndo", "you", "re-\nbe-", "-peat\n-lieve", "that")) +
#Violins
geom_violin(
aes(col = clause, fill = clause),
alpha = .1,
linewidth = 0.5,
# fill = NA,
position = "identity",
width = 1)+
scale_fill_manual(values=c("#FF0040","#ffc40c","#0090FF"),
labels=c("A: Can you repeat that?", "B: Can you believe that?", "C: Do you believe that?"),
guide = "none",
name="") +
scale_color_manual(values=c("#FF0040","#ffc40c","#0090FF"),
labels=c("A: Can you repeat that?", "B: Can you believe that?", "C: Do you believe that?"),
guide="none",
name="") +
# Dots
geom_jitter(
# Insert the variable (col = x), to get the plot color-coded
# e.g. by clause, setting, floorChange, ...
aes(col = clause),
alpha = .6,
position = position_jitter(width = 0.3),
size = 0.2)+
scale_color_manual(values=c("#FF0040","#ffc40c","#0090FF"),
labels=c("A: Can you repeat that?", "B: Can you believe that?", "C: Do you believe that?"),
guide = "none",
name="") +
### Means
stat_summary(aes(col = clause, fill = clause),
fun = "mean",
alpha = 1,
shape = 4,
size = 0.8
)+
scale_fill_manual(values=c("#FF0040","#ffc40c","#0090FF"),
labels=c("A: Can you repeat that?", "B: Can you believe that?", "C: Do you believe that?"),
# guide = "none",
name="") +
scale_color_manual(values=c("#FF0040","#ffc40c","#0090FF"),
labels=c("A: Can you repeat that?", "B: Can you believe that?", "C: Do you believe that?"),
# guide = "none",
name="") +
# Labels and look
geom_hline(yintercept = normLine)+
geom_vline(xintercept = c(1.5, 2.5, 3.5, 4.5), linetype = "dotted")+
ylim(limMin, limMax)+
theme_classic()+
# # Titel yes/no?
# ggtitle(headTitle)+
xlab("Syllable")+
ylab(yLabel)
print(plotGenerator)
# # --save?
# ggsave(plotGenerator, file=paste0("result_plots/", headTitle, "_all_clauses","_Plot.pdf"), device=cairo_pdf)
# #### ATTENTION ####
# # --save in "All_Focus" folder #
# ggsave(plotGenerator, file=paste0("result_plots/All_Focus/", headTitle, "_all_clauses","_Plot.pdf"), device=cairo_pdf)
# ####
# #### ATTENTION ####
# # --save in "No_Focus_at_all" folder #
# ggsave(plotGenerator, file=paste0("result_plots/No_Focus_at_all/", headTitle, "_(No focus at all)", "_all_clauses","_Plot.pdf"), device=cairo_pdf)
# ####
#### ATTENTION ####
# # --save in "Only_all_focus" folder #
# ggsave(plotGenerator, file=paste0("result_plots/Only_all_focus/", headTitle, "_(Only all focus)", "_all_clauses","_Plot.pdf"), device=cairo_pdf)
# ###
```
keep (Hauke didn't use, but awesome!)
```{r 3d plots syllable}
#Which syllable?
syllX <- c("aux-u", "s-u", "v-p", "v-u", "o-u")[1]
#
titleX <- paste("Syllable:", syllX)
# Plot
scatter3D <- data_TV %>% filter(syll_label == syllX) %>%
ggplot(aes(sync_rel, DeltaF0_rel))+
geom_jitter(aes(col = clause, fill = clause, size = mass_rel),
shape = 21, alpha = 0.3)+
scale_color_manual(breaks = c("a", "b", "c"),
values = c("#FF0040","#ffc40c","#0090FF"),
guide = guide_legend(order = 1),
name = "Clause") +
scale_fill_manual(breaks = c("a", "b", "c"),
values = c("#FF0040","#ffc40c","#0090FF"),
guide = guide_legend(order = 1),
name = "Clause") +
## Adjust the range of points size
scale_radius(range = c(0, 20),
limits = c(0, 2.5),
breaks = c(0.5, 1, 1.5),
name="Mass"
) +
geom_vline(xintercept = 0)+
geom_hline(yintercept = 0)+
xlim(-18, 18)+
ylim(-95, 95)+
xlab("Synchrony")+
ylab(expression(Delta~"F0 (%)"))+
labs(title = titleX)+
theme_bw()+
theme(legend.text = element_text(size = 20),
legend.title = element_text(size = 20),
axis.title.x = element_text(size = 20),
axis.title.y = element_text(size = 20),
axis.text = element_text(size = 20),
text = element_text(size = 18),
plot.title = element_text(size = 23, hjust = 0.5),
plot.subtitle = element_text(size = 21, hjust = 0.5))+
facet_wrap(~clause)
scatter3D
```
```{r dur vs mass}
### mean duration vs. mean mass (interesting especially for syllable v-u in clause a) ###
# create interval_duration to get the duration of the whole utterance (all syllables) of each speaker (group by speaker)
data_TV <- data_TV %>%
group_by(speaker) %>%
mutate(total_duration = sum(intervalDuration)) %>%
# create rel_duration to get the proportional length of every syllable in comparison with the whole utterance
group_by(speaker, syll_label) %>%
mutate(rel_duration = intervalDuration / total_duration)
# just to check, if the sum of all rel_durations per speaker equals 1 (indeed they do, so the code above seems right)
aggregate(data_TV$rel_duration, list(data_TV$speaker), FUN=sum)
# get mean values for the same syllables of every clause type
data_TV %>% group_by(clause, syll_label) %>% summarize(mean_rel_dur = mean(rel_duration))
# divide mean_rel_dur (s. above) by 0.2 (one fifth; one of five syllables; Note: not every (but most) utterance has 5 syllables) to see, if the relative duration is above or below average (relative) duration (=1)
data_TV %>% group_by(clause, syll_label) %>% summarize(mean_rel_dur_2 = mean(rel_duration)/0.2)
# a v-u "-peat": 0.232 divided by 0.2 --> (1.161)
# b v-u "-lief": 0.249 (1.247)
# c v-U "-lief": 0.264 (1.324)
# --> The mean relative duration of syllable v-u ("-peat") in clause a is above average. But its periodic mass is slightly below average. This might be due to its non-vocalic parts [p] and [t].
# Eventhough the mean duration of v-u is shorter in clause a (1.16) than in clauses b (1.25) and c (1.32), this alone can not explain the lower mean mass value. Whereas the mean_mass values of v-u for b (1.31) and c (1.37) are higher than the mean durations, in a the mean mass value (0.97) is lower than the mean duration.
### Get the means of mass, synchrony, delta f0 per clause/syllable ###
data_TV %>%
group_by(syll_label, clause) %>%
summarize(mean_mass = mean(mass_rel), mean_synchrony = mean(sync_rel), mean_DeltaF0 = mean(DeltaF0_rel))
```
run for durartions...
```{r reduce data_TV to one row per file}
### reduce data_TV to one row per file
data_TV_reduced <- distinct(data_TV, speaker, .keep_all = TRUE)
# reduce columns
data_TV_reduced <- select(data_TV_reduced, -(f0_token_min:autoSyll_dur))
# data_TV_reduced <- select(data_TV_reduced, -(massCategory:syncDetail))
data_TV_reduced <- select(data_TV_reduced, -syll_label)
data_TV_reduced <- select(data_TV_reduced, -auto_rel_dur)
data_TV_reduced <- select(data_TV_reduced, -syll_dur)
data_TV_reduced <- select(data_TV_reduced, -rel_dur)
###
# reduce data_TV_noFocus to one row per file
data_TV_reduced_noFocus <- distinct(data_noFocus, speaker, .keep_all = TRUE)
# reduce columns
data_TV_reduced_noFocus <- select(data_TV_reduced_noFocus, -(f0_token_min:autoSyll_dur))
# data_TV_reduced_noFocus <- select(data_TV_reduced_noFocus, -(massCategory:syncDetail))
data_TV_reduced_noFocus <- select(data_TV_reduced_noFocus, -syll_label)
data_TV_reduced_noFocus <- select(data_TV_reduced_noFocus, -auto_rel_dur)
data_TV_reduced_noFocus <- select(data_TV_reduced_noFocus, -syll_dur)
data_TV_reduced_noFocus <- select(data_TV_reduced_noFocus, -rel_dur)
###
# reduce data_TV_onlyFocus to one row per file
data_TV_reduced_onlyFocus <- distinct(data_onlyFocus, speaker, .keep_all = TRUE)
# reduce columns
data_TV_reduced_onlyFocus <- select(data_TV_reduced_onlyFocus, -(f0_token_min:autoSyll_dur))
# data_TV_reduced_onlyFocus <- select(data_TV_reduced_onlyFocus, -(massCategory:syncDetail))
data_TV_reduced_onlyFocus <- select(data_TV_reduced_onlyFocus, -syll_label)
data_TV_reduced_onlyFocus <- select(data_TV_reduced_onlyFocus, -auto_rel_dur)
data_TV_reduced_onlyFocus <- select(data_TV_reduced_onlyFocus, -syll_dur)
data_TV_reduced_onlyFocus <- select(data_TV_reduced_onlyFocus, -rel_dur)
```
```{r histogram generator}
# Plotting histograms (general stuff)
### Which data set?
### What is plotted (duration, pitch range, ...)?
measure_G <- c(1,2,3)[3] # [1] = duration, [2] = pitch range, [3] = auto_total_dur(besser!?)
### Mean [1] or median [2]?
mean_or_median <- c(1, 2, 3)[3] # [1] = Mean, [2] = Median, [3] = both
#
measure <- data_TV_reduced_noFocus$total_dur
if (measure_G == 2) {measure <- data_TV_reduced_noFocus$f0_speaker_range}
if (measure_G == 3) {measure <- data_TV_reduced_noFocus$auto_total_dur}
### Calculate mean and median and put them in an external df
# for duration
df_stats <-
data_TV_reduced_noFocus %>%
group_by(clause) %>%
summarize(
mean = mean(total_dur),
median = median(total_dur),
N = length(total_dur),
sd = sd(total_dur)) %>%
gather(key = key, value = value, mean:median)
# for f0 range
if (measure_G == 2) {
df_stats <-
data_TV_reduced_noFocus %>%
group_by(clause) %>%
summarize(
mean = mean(f0_speaker_range),
median = median(f0_speaker_range),
N = length(f0_speaker_range),
sd = sd(f0_speaker_range)) %>%
gather(key = key, value = value, mean:median)
}
###
# for auto_total_dur
if (measure_G == 3) {
df_stats <-
data_TV_reduced_noFocus %>%
group_by(clause) %>%
summarize(
mean = mean(auto_total_dur),
median = median(auto_total_dur),
N = length(auto_total_dur),
sd = sd(auto_total_dur)) %>%
gather(key = key, value = value, mean:median)
}
###
##### Brauch ich das Folgende? (Ich glaube, nur wenn ich "key" und "value" nicht benutze)
### Place and label of V-Line
middle_measure <- df_stats$mean
if (mean_or_median == 2) {middle_measure <- df_stats$median}
#
v_line_label <- c("Mean", "Median")[mean_or_median]
###
# For the case, that both mean and median should be depicted
if (mean_or_median == 3)
{middle_measure <- df_stats$mean
middle_measure_2 <- df_stats$median
#
v_line_label <- "Mean"
v_line_label_2 <- "Median"}
###
# Höchster Wert der x-Achse
x_axis_max <- c(2000, 600, 2000)[measure_G]
# "Breite" der Bins. Werte innerhalb dieser Range fallen in die gleiche Kategorie (werden zusammengezählt).
binwidth_V <- c(50, 25, 50)[measure_G]
# Titel der x-Achse
x_label <- c("Utterance duration (ms)", "F0 range (Hz)", "Utterance duration (ms)")[measure_G]
### Plot
plotGenerator_G <- ggplot(data_TV_reduced_noFocus, aes(x = measure, fill = clause))+
geom_histogram(position = "dodge",
binwidth = binwidth_V,
# color = "black",
alpha=0.7,
boundary = 0)+
scale_fill_manual(values=c("#FF0040","#ffc40c","#0090FF"),
labels=c("A: Can you repeat that?", "B: Can you believe that?", "C: Do you believe that?"),
guide = guide_legend(order = 1),
name="") +
scale_x_continuous(breaks = seq (0, x_axis_max, binwidth_V*2))+
# scale_fill_manual("Clause", values = c("blue", "red", "yellow"))+
geom_vline(data = df_stats, aes(xintercept = value, color = clause, linetype = key))+
scale_color_manual(values=c("#FF0040","#ffc40c","#0090FF"),
labels=c("A: Can you repeat that?", "B: Can you believe that?", "C: Do you believe that?"),
guide = "none",
name="Utterance") +
scale_linetype_manual(values=c("solid", "dashed"),
labels=c("Mean", "Median"),
guide = guide_legend(order = 2),
name="") +
labs(x=x_label, y="Count")
print(plotGenerator_G)
# #--save?
# ggsave(plotGenerator_G, file=paste0("result_plots/", "Distribution_", x_label, "_Plot.pdf"), device=cairo_pdf)
```
```{r utterance duration density plot}
## variables ##
measure <- data_TV_reduced_noFocus$auto_total_dur
## ## ##
### Calculate mean and median for duration (auto_total_dur) and put them in an external df
df_stats <-
data_TV_reduced_noFocus %>%
group_by(clause) %>%
summarize(
mean = mean(auto_total_dur),
median = median(auto_total_dur),
N = length(auto_total_dur),
sd = sd(auto_total_dur))
# Which middle measure? Mean or median?
middle_measure <- df_stats$mean
colors <- c("a" = "#FF0040", "b" = "#ffc40c", "c" = "#0090FF")
### Plot
plotGenerator_density <- ggplot(data_TV_reduced_noFocus, aes(x = measure, fill = clause))+
geom_density(aes(col = clause,fill = clause),
alpha=.1,
linewidth = 0.5,
adjust = 1
) +
scale_x_continuous(breaks = seq(0, 1300, 100)) +
scale_fill_manual(values=c("#FF0040","#ffc40c","#0090FF"),
labels=c("A: Can you repeat that?", "B: Can you believe that?", "C: Do you believe that?"),
# guide = "none",
name="") +
scale_color_manual(values=c("#FF0040","#ffc40c","#0090FF"),
labels=c("A: Can you repeat that?", "B: Can you believe that?", "C: Do you believe that?"),
# guide="none",
name="") +
geom_vline(data = df_stats, aes(xintercept = middle_measure, color = clause)) +
# xlim(0, 1500) +
labs(x="Utterance duration (ms)", y="Density") +
theme_classic()
print(plotGenerator_density)
# # --save?
# ggsave(plotGenerator_density, file=paste0("result_plots/", "Density", "utterance_duration", "_Plot.pdf"), device=cairo_pdf)
# #### ATTENTION ####
# # --save in "No_Focus_at_all" folder #
# ggsave(plotGenerator_density, file=paste0("result_plots/No_Focus_at_all/", "Density", "utterance_duration", "_(No focus at all)", "_Plot.pdf"), device=cairo_pdf)
```
```{r ALL FOCUS: utterance duration density plot}
## variables ##
measure <- data_TV_reduced$auto_total_dur
## ## ##
### Calculate mean and median for duration (auto_total_dur) and put them in an external df
df_stats <-
data_TV_reduced %>%
group_by(clause) %>%
summarize(
mean = mean(auto_total_dur),
median = median(auto_total_dur),
N = length(auto_total_dur),
sd = sd(auto_total_dur))
# Which middle measure? Mean or median?
middle_measure <- df_stats$mean
colors <- c("a" = "#FF0040", "b" = "#ffc40c", "c" = "#0090FF")
### Plot
plotGenerator_density <- ggplot(data_TV_reduced, aes(x = measure, fill = clause))+
geom_density(aes(col = clause,fill = clause),
alpha=.1,
linewidth = 0.5,
adjust = 1
) +
scale_x_continuous(breaks = seq(0, 1600, 100)) +
scale_fill_manual(values=c("#FF0040","#ffc40c","#0090FF"),
labels=c("A: Can you repeat that?", "B: Can you believe that?", "C: Do you believe that?"),
# guide = "none",
name="") +
scale_color_manual(values=c("#FF0040","#ffc40c","#0090FF"),
labels=c("A: Can you repeat that?", "B: Can you believe that?", "C: Do you believe that?"),
# guide="none",
name="") +
geom_vline(data = df_stats, aes(xintercept = middle_measure, color = clause)) +
# xlim(0, 1500) +
labs(x="Utterance duration (ms)", y="Density") +
theme_classic()
print(plotGenerator_density)
# # --save?
# ggsave(plotGenerator_density, file=paste0("result_plots/All_Focus/", "Density", "utterance_duration_(all_focus)_", "_Plot.pdf"), device=cairo_pdf)
```