-
Notifications
You must be signed in to change notification settings - Fork 0
/
pandaslib.py
784 lines (640 loc) · 31.3 KB
/
pandaslib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
# ----------------------------------------------------------------------------------------------------------------------------
# LOGGING
# ----------------------------------------------------------------------------------------------------------------------------
import logging
logger = logging.getLogger(__name__)
# ----------------------------------------------------------------------------------------------------------------------------
# Packages
# ----------------------------------------------------------------------------------------------------------------------------
from .pythonlib import ensure_installed
# ensure_installed("pandas numpy pyarrow")
# ----------------------------------------------------------------------------------------------------------------------------
# Normal Imports
# ----------------------------------------------------------------------------------------------------------------------------
from typing import *
import gc
import io
import os
import warnings
import numpy as np
import pandas as pd
import pyarrow as pa
from .strings import find_between
from collections import defaultdict
from pyarrow.dataset import dataset
from pyutilz.pythonlib import to_float
import ctypes
from multiprocessing import Array
from IPython.display import display, Markdown, Latex
from .system import tqdmu
from os.path import join, sep
import glob
from os.path import basename, dirname, splitext, join, exists, getsize
from pyutilz.system import ensure_dir_exists
from timeit import default_timer as timer
from itertools import chain
import tempfile
import shutil
def load_df(fpath: str, tail: int) -> pd.DataFrame:
logger.info(f"Загружаем данные из файла {fpath}...")
df = pd.read_pickle(fpath)
if tail is not None:
if tail > 0:
logger.info(f"Ограничимся работой с последними {tail} откликами")
df = df.tail(tail)
return df
def set_df_columns_types(df: object, types_dict: dict) -> None:
df_columns = set(df.columns)
for the_type in types_dict.keys():
for column in types_dict[the_type]:
if column in df_columns:
df[column] = df[column].astype(the_type)
def get_categorical_columns_indices(ds: object) -> tuple:
i = 0
categorical_features_indices = []
non_categorical_features_indices = []
unique_categorical_values = dict()
for col, thetype in ds.dtypes.iteritems():
if type(thetype) == pd.core.dtypes.dtypes.CategoricalDtype:
# print(i,col,thetype,type(thetype))
categorical_features_indices.append(i)
unique_categorical_values[col] = list(ds[col].cat.categories.values)
else:
non_categorical_features_indices.append(i)
i = i + 1
return non_categorical_features_indices, categorical_features_indices, unique_categorical_values
def get_columns_of_type(df: object, type_names: Sequence) -> list:
res = []
for col, type_name in df.dtypes.to_dict().items():
for the_type in type_names:
if the_type in str(type_name):
res.append(col)
return res
def optimize_dtypes(
df: pd.DataFrame,
max_categories: Optional[int] = 100,
reduce_size: bool = True,
float_to_int: bool = True,
float_to_float: bool = True,
skip_columns: Sequence = (),
use_uint: bool = True, # might want to turn this off when using sqlalchemy (Unsigned 64 bit integer datatype is not supported)
verbose: bool = False,
inplace: bool = True,
skip_halffloat: bool = True,
ensure_float64_precision: bool = True,
) -> pd.DataFrame:
"""Compress datatypes in a pandas dataframe to save space while keeping precision.
Optionally attempts converting floats to ints where feasible.
Optionally converts object fields with nuniques less than max_categories to categorical.
"""
# -----------------------------------------------------------------------------------------------------------------------------------------------------
# Inits
# -----------------------------------------------------------------------------------------------------------------------------------------------------
old_dtypes = {}
new_dtypes = {}
int_fields = []
float_fields = []
for field, the_type in df.dtypes.to_dict().items():
if field not in skip_columns:
old_dtypes[field] = the_type.name
if "int" in the_type.name:
int_fields.append(field)
elif "float" in the_type.name:
float_fields.append(field)
# -----------------------------------------------------------------------------------------------------------------------------------------------------
# Every object var with too few categories must become a Category
# -----------------------------------------------------------------------------------------------------------------------------------------------------
if max_categories is not None:
for col, the_type in old_dtypes.items():
if "object" in the_type:
if field in skip_columns:
continue
# first try to int64, then to float64, then to category
new_dtype = None
try:
df[col] = df[col].astype(np.int64)
old_dtypes[col] = "int64"
int_fields.append(col)
except Exception as e1:
try:
df[col] = df[col].astype(np.float64)
old_dtypes[col] = "float64"
float_fields.append(col)
except Exception as e2:
try:
n = df[col].nunique()
if n <= max_categories:
if verbose:
logger.info("%s %s->category", col, the_type)
new_dtypes[col] = "category"
if inplace:
df[col] = df[col].astype(new_dtypes[col])
except Exception as e3:
if verbose:
logger.warning(f"Could not convert to category column {col}: {str(e3)}")
pass # to avoid stumbling on lists like [1]
# -----------------------------------------------------------------------------------------------------------------------------------------------------
# Finds minimal size suitable to hold each variable of interest without loss of coverage
# -----------------------------------------------------------------------------------------------------------------------------------------------------
if reduce_size:
mantissas = {}
uint_fields = []
if use_uint:
conversions = [
(int_fields, "uint"),
(int_fields, "int"),
]
else:
conversions = [
(int_fields, "int"),
]
if float_to_int:
# -----------------------------------------------------------------------------------------------------------------------------------------------------
# Checks for each float if it has no fractional digits and NaNs, and, therefore, can be made an int
# ----------------------------------------------------------------------------------------------------------------------------------------------------
possibly_integer = []
for col in tqdmu(float_fields, desc="checking float2int", leave=False):
if not (df[col].isna().any().any()): # NAs can't be converted to int
fract_part, _ = np.modf(df[col])
if (fract_part == 0.0).all():
possibly_integer.append(col)
if possibly_integer:
if use_uint:
conversions.append((possibly_integer, "uint"))
conversions.append((possibly_integer, "int"))
if float_to_float:
conversions.append((float_fields, "float"))
for fields, type_name in tqdmu(conversions, desc="size reduction", leave=False):
fields = [el for el in fields if el not in uint_fields]
if len(fields) > 0:
max_vals = df[fields].max()
min_vals = df[fields].min()
if type_name in ("int", "uint"):
powers = [8, 16, 32, 64]
topvals = [np.iinfo(type_name + str(p)) for p in powers]
elif type_name == "float":
powers = [32, 64] if skip_halffloat else [16, 32, 64] # no float8
topvals = [np.finfo(type_name + str(p)) for p in powers]
min_max = pd.concat([min_vals, max_vals], axis=1)
min_max.columns = ["min", "max"]
for r in min_max.itertuples():
col = r.Index
cur_power = int(old_dtypes[col].replace("uint", "").replace("int", "").replace("float", ""))
for j, p in enumerate(powers):
if p >= cur_power:
if not (col in float_fields and type_name != "float"):
break
if r.max <= topvals[j].max and r.min >= topvals[j].min:
if ensure_float64_precision and type_name == "float":
# need to ensure we are not losing precision! np.array([2.205001270000e09]).astype(np.float32) must not pass here, for example.
if col not in mantissas:
values = df[col].values
with np.errstate(divide="ignore"):
_, int_part = np.modf(np.log10(np.abs(values)))
mantissa = np.round(values / 10**int_part, np.finfo(old_dtypes[col]).precision - 1)
mantissas[col] = mantissa
else:
mantissa = mantissas[col]
fract_part, _ = np.modf(mantissa * 10 ** (np.finfo("float" + str(p)).precision + 1))
fract_part, _ = np.modf(np.round(fract_part, np.finfo("float" + str(p)).precision - 1))
if (np.ma.array(fract_part, mask=np.isnan(fract_part)) != 0).any(): # masking so that NaNs do not count
if verbose:
logger.info("Column %s can't be converted to float%s due to precision loss.", col, p)
break
if type_name in ("uint", "int"):
uint_fields.append(col) # successfully converted, so won't need to consider anymore
if verbose:
logger.info("%s [%s]->[%s%s]", col, old_dtypes[col], type_name, p)
new_dtypes[col] = type_name + str(p)
if inplace:
df[col] = df[col].astype(new_dtypes[col])
break
# -----------------------------------------------------------------------------------------------------------------------------------------------------
# Actual converting & reporting.
# -----------------------------------------------------------------------------------------------------------------------------------------------------
if len(new_dtypes) > 0 and not inplace:
if verbose:
logger.info(f"Going to use the following new dtypes: {new_dtypes}")
return df.astype(new_dtypes)
else:
return df
def nullify_standard_values(
df: object, field: str, min_records: int = 300, persons_field: str = None, min_persons: int = 0, placeholder=np.nan, verbose: bool = False
):
"""
Replaces (inplace) all standard responses with NaN to indicate it's not custom
"""
tmp = df[field].value_counts(dropna=False)
standard_values = tmp[tmp > min_records].index.values
if persons_field:
top_values = set()
for val in standard_values:
qty = df[df[field] == val][persons_field].nunique()
if qty > min_persons:
if verbose:
if len(top_values) == 0:
print(f"Field {field}")
print(f"\t: value {val} is not custom, as used by {qty} persons")
top_values.add(val)
else:
top_values = standard_values
df.loc[df[field].isin(top_values), field] = placeholder
def prefixize_columns(df: object, prefix: str, special_prefixes: dict = {}, sep="_", exclusions: Sequence = set(), inplace: bool = True):
"""
Prefix every column of a pandas dataframe (except clearly formulated exclusions) with some arbitrary prefix string - to identify variable's source
"""
columns = {col: special_prefixes.get(col, prefix) + sep + col if col not in exclusions else col for col in df.columns}
if inplace:
df.rename(columns={col: special_prefixes.get(col, prefix) + sep + col if col not in exclusions else col for col in df.columns}, inplace=True)
return columns
else:
return df.rename(columns={col: special_prefixes.get(col, prefix) + sep + col if col not in exclusions else col for col in df.columns}, inplace=False)
def showcase_df_columns(
df: object, cols: list = None, excluded_cols: list = [], max_vars: int = None, dropna: bool = False, use_markdown: bool = True, use_print: bool = True
):
"""
Show distribution of values for each dataframe column
"""
if cols is None or len(cols) == 0:
cols = df.columns
for var in cols:
if var not in excluded_cols:
if use_markdown:
display(Markdown(f"**{var}** {df[var].dtype}"))
if use_print:
print(f"{var.upper()} {df[var].dtype}")
stats = df[var].value_counts(dropna=dropna)
if max_vars is not None:
assert max_vars >= 0
if max_vars > 0:
stats = stats.head(max_vars)
else:
stats = ""
print(stats)
class FeatureNamer:
"""
Used to save RAM when building dataframes from dicts with big feature names, by renaming them to small consecutive numbers
>>>fname=FeatureNamer();fname('abc');fname('abcd');fname('abc'),fname.rev(0)
(0, 'abc')
"""
def __init__(self, initial_values: Sequence = []):
self.fnames_index = 0
self.fnames = {}
self.revfnames = {}
for name in initial_values:
self(name)
def __call__(self, name: str):
if name not in self.fnames:
self.fnames[name] = self.fnames_index
self.revfnames[self.fnames_index] = name
self.fnames_index += 1
return self.fnames[name]
def rev(self, key: int):
return self.revfnames.get(key)
def share_dataframe(df: pd.DataFrame) -> pd.DataFrame:
"""
Returns a cloned dataframe from create numpy mem views that can be shared with multiple worker processes as a global variable.
Should not contain datetime dtype! or won't be able to fit the double dtype.
Ram usage grows from 7x (while cloning) to 3x (while using) of the original's df, but adding more workers does not increase RAM consumption anymore!
"""
# the origingal dataframe is df, store the columns/dtypes pairs
df_dtypes_dict = dict(list(zip(df.columns, df.dtypes)))
# declare a shared Array with data from df
mparr = Array(ctypes.c_double, df.values.reshape(-1), lock=True)
# create a new df based on the shared array
df_shared = pd.DataFrame(np.frombuffer(mparr.get_obj()).reshape(df.shape), columns=df.columns).astype(df_dtypes_dict)
return df_shared
def remove_stale_columns(X: pd.DataFrame) -> list:
"""
Removes columns with values that do not change
"""
stale_columns = ~(X != X.iloc[0]).any()
num_stale = stale_columns.sum()
if num_stale > 0:
logger.warning(f"Found {num_stale} stale columns: {','.join(stale_columns[stale_columns == True].index.values.tolist())}")
X = X.loc[:, stale_columns[stale_columns == False].index.values]
all_features_names = X.columns.tolist()
return all_features_names
def concat_and_flush_df_list(
lst: list, file_name: str, to_csv: bool = False, csv_cols: list = None, write_fcn: str = "to_pickle", write_extension: str = "pckl", set_index: str = None
) -> object:
if len(lst) > 0:
joined_df = pd.concat(lst, axis=0, ignore_index=True)
lst.clear()
del lst
gc.collect()
if to_csv:
if cols is None:
cols = joined_df.columns.values
joined_df.to_csv(f"{file_name}.csv", mode="w", header=True)
else:
joined_df[cols].to_csv(f"{file_name}.csv", mode="a", header=False)
else:
if set_index:
joined_df.set_index(set_index, inplace=True)
getattr(joined_df, write_fcn)(f"{file_name}.{write_extension}")
return joined_df
def read_stats_from_multiple_files(
joint_file_name: str = "joint_features",
folder: str = "features",
max_files: int = 250,
template: str = "*.pckl",
exclude: str = None,
read_fcn: str = "read_pickle",
write_fcn: str = "to_pickle",
write_extension: str = "pckl",
delete_after: bool = False,
sentinel_field: str = None,
sentinel_fcn: object = None,
set_index: str = None,
optimize: bool = False,
save_on_successful_optimization: bool = False,
min_size_improvement_percent: float = 0.05,
min_size_improvement: float = 5.0,
):
lst = []
fnames = []
for i, filename in tqdmu(enumerate(glob.glob(join(folder, template)))):
if exclude:
if exclude in filename:
continue
fnames.append(filename)
tmp_df = getattr(pd, read_fcn)(filename)
old_size = tmp_df.memory_usage(index=True).sum() / 1024**3
logger.info(f"Merging {filename} with {len(tmp_df):_} rows of size {old_size:.1f} Gb")
if optimize:
tmp_df = optimize_dtypes(tmp_df)
gc.collect()
new_size = tmp_df.memory_usage(index=True).sum() / 1024**3
logger.info(f"After optimization, {filename} got size {new_size:.1f} Gb")
if save_on_successful_optimization:
if new_size <= old_size * (1 - min_size_improvement_percent) or old_size - new_size >= min_size_improvement:
logger.info(f"Re-saving file {filename} due to lower size")
getattr(tmp_df, write_fcn)(f"{'.'.join(filename.split('.')[:-1])}.{write_extension}")
if sentinel_field:
while sentinel_field in tmp_df:
logger.warning(f"Sentinel field {sentinel_field} was already in the frame {filename}")
sentinel_field += "1"
fname_part = filename.split(sep)[-1]
if sentinel_fcn:
tmp_df[sentinel_field] = sentinel_fcn(fname_part)
else:
tmp_df[sentinel_field] = fname_part
lst.append(tmp_df)
if max_files is not None:
if len(lst) >= max_files:
break
del tmp_df
if len(lst) >= 0:
try:
res = concat_and_flush_df_list(lst, file_name=joint_file_name, write_fcn=write_fcn, write_extension=write_extension, set_index=set_index)
logger.info(f"Final df size ({len(res):_} rows)")
if delete_after:
for i, filename in enumerate(fnames):
try:
os.remove(filename)
except:
pass
return res
except:
pass
def group_columns_by_dtype(df: pd.DataFrame) -> dict:
groups = defaultdict(set)
for var_name, var_type in df.dtypes.iteritems():
groups[var_type.name].add(var_name)
return groups
def classify_column_types(df: pd.DataFrame = None, col: str = None, dtype: object = None) -> tuple:
"""Return bunch of booleans: whether certain column is of particualr dtype."""
if dtype is None:
assert (df is not None) and (col)
dtype = df.dtypes[col]
type_name = dtype.name
col_is_boolean = "bool" in type_name
col_is_object = "object" in type_name
col_is_datetime = "datetime" in type_name
col_is_categorical = "category" in type_name
col_is_numeric = not (col_is_boolean or col_is_object or col_is_datetime or col_is_categorical)
return col_is_boolean, col_is_object, col_is_datetime, col_is_categorical, col_is_numeric
def read_parquet_with_pyarrow(path: str, nrows: int) -> pd.DataFrame:
if nrows:
df = dataset(path).scanner().head(nrows).to_pandas()
else:
df = dataset(path).scanner().to_pandas()
return df
def get_df_memory_consumption(df: pd.DataFrame, max_cols: int = 0) -> float:
"""Returns RAM occupied by a pandas dataframe in bytes.
Example df.info() output:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11546660 entries, 0 to 11546659
Columns: 4 entries, basic>ticker to basic>ts_minute
dtypes: category(1), int8(3)
memory usage: 44.0 MB
"""
mem_consumption = io.StringIO()
df.info(memory_usage="deep", buf=mem_consumption, max_cols=max_cols)
res = mem_consumption.getvalue()
res = find_between(res, "memory usage: ", "\n")
for symbol, size in [
("KB", 1e3),
("MB", 1e6),
("GB", 1e9),
("TB", 1e12),
("B", 1),
]:
if res.endswith(symbol):
res = to_float(res.strip(symbol).strip()) * size
break
return res
def remove_constant_columns(df: pd.DataFrame, verbose: bool = False, prewarm_size: int = 10_000) -> None:
if len(df) <= prewarm_size:
susp_columns = df.columns[df.nunique() <= 1].tolist()
else:
susp_columns = df.columns[df.head(prewarm_size).nunique() <= 1].tolist()
for col in tqdmu(susp_columns.copy(), desc="cnst col", leave=False):
if df[col].nunique() > 1:
susp_columns.remove(col)
if verbose and susp_columns:
if len(susp_columns) > 20:
logger.warning(f"Removing {len(susp_columns):_} constant columns")
df.drop(columns=susp_columns, inplace=True)
else:
logger.warning(f"Removing constant columns {susp_columns}")
for var in susp_columns:
del df[var]
# ----------------------------------------------------------------------------------------------------------------------------
# Dataframe compression benchmarks
# ----------------------------------------------------------------------------------------------------------------------------
def measure_read_write_performance(df: pd.DataFrame, fname: str, read_method: str, read_params: dict, write_method: str, write_params: dict, nrepeats: int):
read_times, write_times, read_sizes, write_sizes = [], [], [], []
for _ in range(nrepeats):
# write
start_time = timer()
getattr(df, write_method)(fname, **write_params)
duration = timer() - start_time
size = getsize(fname) / (1024**2)
write_times.append(duration)
write_sizes.append(size)
# read
gc.collect()
start_time = timer()
tmp = getattr(pd, read_method)(fname, **read_params)
duration = timer() - start_time
size = get_df_memory_consumption(tmp) / (1024**2)
del tmp
read_times.append(duration)
read_sizes.append(size)
gc.collect()
return [np.array(arr) for arr in (read_times, write_times, read_sizes, write_sizes)]
def pack_benchmark_results(res, config, read_times, write_times, read_sizes, write_sizes):
res.append([config, *list(chain(*[(np.mean(arr), np.std(arr)) for arr in (read_times, write_times, read_sizes, write_sizes)]))])
def benchmark_dataframe_parquet_compression(res, temp_folder, df, nrepeats, skip_configs=("parquet-fastparquet-brotli",)):
file_format = "parquet"
for engine in tqdmu(("fastparquet", "pyarrow"), desc=f"{file_format} engine", leave=False):
for compr in tqdmu("snappy gzip brotli lz4 zstd".split(), desc=f"{file_format} compression method", leave=False):
config = f"{file_format}-{engine}-{compr}"
if config in skip_configs:
continue
fname = join(temp_folder, rf"{config}.{file_format}")
read_times, write_times, read_sizes, write_sizes = measure_read_write_performance(
df=df,
fname=fname,
read_method="read_parquet",
read_params=dict(engine=engine),
write_method="to_parquet",
write_params=dict(engine=engine, compression=compr),
nrepeats=nrepeats,
)
pack_benchmark_results(res, config, read_times, write_times, read_sizes, write_sizes)
def benchmark_dataframe_pickle_compression(res, temp_folder, df, nrepeats):
file_format = "pickle"
# for level in tqdmu(range(1, 10), desc=f"{file_format} engine", leave=False):
for compr in tqdmu(["zip", "gzip", "bz2", "zstd", "xz", "tar"], desc=f"{file_format} compression method", leave=False):
config = f"{file_format}-{compr}" # -{level}
fname = join(temp_folder, rf"{config}.{file_format}.{compr}")
read_times, write_times, read_sizes, write_sizes = measure_read_write_performance(
df=df,
fname=fname,
read_method="read_pickle",
read_params=dict(compression={"method": compr}),
write_method="to_pickle",
write_params=dict(compression={"method": compr}, protocol=-1), # "compresslevel": level
nrepeats=nrepeats,
)
pack_benchmark_results(res, config, read_times, write_times, read_sizes, write_sizes)
def benchmark_dataframe_hdf_compression(res, temp_folder, df, nrepeats):
file_format = "hdf"
for level in tqdmu(range(1, 10), desc=f"{file_format} engine", leave=False):
for compr in tqdmu("zlib lzo bzip2 blosc".split(), desc=f"{file_format} compression method", leave=False):
config = f"{file_format}-{compr}" # -{level}
fname = join(temp_folder, rf"{config}.{file_format}.{compr}")
read_times, write_times, read_sizes, write_sizes = measure_read_write_performance(
df=df,
fname=fname,
read_method="read_hdf",
read_params=dict(complib=compr),
write_method="to_hdf",
write_params=dict(complib=compr, complevel=level, key="test"),
nrepeats=nrepeats,
)
pack_benchmark_results(res, config, read_times, write_times, read_sizes, write_sizes)
def benchmark_dataframe_csv_compression(res, temp_folder, df, nrepeats):
file_format = "csv"
for compr in tqdmu(["zip", "gzip", "bz2", "zstd", "xz", "tar"], desc=f"{file_format} compression method", leave=False):
config = f"{file_format}-{compr}"
fname = join(temp_folder, rf"{config}.{file_format}.{compr}")
read_times, write_times, read_sizes, write_sizes = measure_read_write_performance(
df=df,
fname=fname,
read_method="read_csv",
read_params=dict(compression={"method": compr}),
write_method="to_csv",
write_params=dict(compression={"method": compr}),
nrepeats=nrepeats,
)
pack_benchmark_results(res, config, read_times, write_times, read_sizes, write_sizes)
def benchmark_dataframe_orc_compression(res, temp_folder, df, nrepeats):
file_format = "orc"
config = f"{file_format}"
fname = join(temp_folder, rf"{config}.{file_format}")
read_times, write_times, read_sizes, write_sizes = measure_read_write_performance(
df=df,
fname=fname,
read_method="read_orc",
read_params=dict(),
write_method="to_orc",
write_params=dict(),
nrepeats=nrepeats,
)
pack_benchmark_results(res, config, read_times, write_times, read_sizes, write_sizes)
def benchmark_dataframe_feather_compression(res, temp_folder, df, nrepeats):
file_format = "feather"
config = f"{file_format}"
fname = join(temp_folder, rf"{config}.{file_format}")
read_times, write_times, read_sizes, write_sizes = measure_read_write_performance(
df=df,
fname=fname,
read_method="read_feather",
read_params=dict(),
write_method="to_feather",
write_params=dict(),
nrepeats=nrepeats,
)
pack_benchmark_results(res, config, read_times, write_times, read_sizes, write_sizes)
def benchmark_dataframe_compression(
df: pd.DataFrame,
head: int = 100_000,
benchmark_dir_path=None,
nrepeats: int = 10,
sort_by="mean_write_size",
return_styled: bool = True,
should_clean_temp_folder: bool = True,
verbose: bool = True,
):
"""Tries various formats & compressiom methods on a part of your dataframe, reports write, read data size & durations."""
warnings.simplefilter(action="ignore", category=pd.errors.PerformanceWarning)
if head:
df = df.head(head).reset_index(drop=True)
df_size = get_df_memory_consumption(df) / (1024**2)
if verbose:
logger.info(f"Pandas: {pd.__version__}, DF size: {df_size:_.2f}Mb, Dtypes: {df.dtypes.value_counts().to_dict()}")
if benchmark_dir_path:
ensure_dir_exists(benchmark_dir_path)
temp_folder = tempfile.mkdtemp(dir=benchmark_dir_path)
res = []
for func in (
benchmark_dataframe_feather_compression,
benchmark_dataframe_orc_compression,
benchmark_dataframe_hdf_compression,
benchmark_dataframe_parquet_compression,
benchmark_dataframe_pickle_compression,
benchmark_dataframe_csv_compression,
):
try:
func(res, temp_folder, df, nrepeats)
except Exception as e:
logger.error(e)
if should_clean_temp_folder:
shutil.rmtree(temp_folder)
res = (
pd.DataFrame(res, columns=["config"] + list(chain(*[("mean_" + arr, "std_" + arr) for arr in "read_time write_time read_size write_size".split()])))
.set_index("config")
.sort_values(sort_by, ascending=True)
)
remove_constant_columns(res)
if return_styled:
try:
res = res.style.background_gradient(axis=None, subset=["mean_write_size", "mean_write_time", "mean_read_time"])
except Exception as e:
logger.exception(e)
return res
def ensure_dataframe_float32_convertability(df: pd.DataFrame) -> None:
"""Lightgbm uses np.result_type(*df_dtypes) to detect array dtype when converting from Pandas input,
which results in float64 for int32 and above. For the rational mem usage, it makes sense to convert cols to float32 directly before training lightgbm."""
for precise_dtype in "uint32 int32 int64 uint64 float64".split():
tmp = df.select_dtypes(precise_dtype)
if tmp.shape[1] > 0:
logger.info(f"Converting {tmp.shape[1]:_} {precise_dtype} columns to float32")
df[tmp.columns] = tmp.astype(np.float32)
def convert_float64_to_float32(df: pd.DataFrame) -> None:
for col in df.head().select_dtypes("float64"):
df[col] = df[col].astype(np.float32)