-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patharbiter.py
191 lines (150 loc) · 6.37 KB
/
arbiter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
"""
Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
Permission to use, copy, modify, distribute and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that the above copyright notice appear in all copies.
Erin Catto makes no representations about the suitability
of this software for any purpose.
It is provided "as is" without express or implied warranty.
"""
from copy import copy
import numpy as np
from typing import Sequence
from body import Body
from collide import Contact, collide
from math_utils import cross
from settings import ACCUMULATE_IMPULSES, POSITION_CORRECTION, WARM_STARTING
class ArbiterKey:
"""Use as a key for a dictionary of Arbiters.
Evaluates to same if contained bodies are the same.
"""
def __init__(self, body_1: Body, body_2: Body) -> None:
# define consistent ordering for attributes
if id(body_1) < id(body_2):
self.body_1 = body_1
self.body_2 = body_2
else:
self.body_1 = body_2
self.body_2 = body_1
def __eq__(self, other: 'ArbiterKey') -> bool:
return self.body_1 == other.body_1 and self.body_2 == other.body_2
def __hash__(self) -> int:
return hash((self.body_1, self.body_2))
class Arbiter:
def __init__(self, body_1: Body, body_2: Body) -> None:
if id(body_1) < id(body_2):
self.body_1 = body_1
self.body_2 = body_2
else:
self.body_1 = body_2
self.body_2 = body_1
self.contacts = collide(self.body_1, self.body_2)
self.friction = np.sqrt(self.body_1.friction * self.body_2.friction)
@property
def num_contacts(self):
return len(self.contacts)
def update(self, new_contacts: Sequence[Contact]) -> None:
merged_contacts = []
# TODO Can maybe optimize this matching/search process using a dict?
for c_new in new_contacts:
c_old = None
for c_old in self.contacts:
if c_new.edges == c_old.edges:
break
if c_old is not None:
c = copy(c_new) # TODO is this copy needed?
merged_contacts.append(c)
if WARM_STARTING:
c.Pn = c_old.Pn
c.Pt = c_old.Pt
c.Pnb = c_old.Pnb
else:
c.Pn = 0.0
c.Pt = 0.0
c.Pnb = 0.0
else:
merged_contacts.append(copy(c_new)) # TODO is this copy needed?
self.contacts = merged_contacts
def pre_step(self, inv_dt: float) -> None:
k_allowed_penetration = 0.01
k_bias_factor = 0.2 if POSITION_CORRECTION else 0.0
for c in self.contacts:
r1 = c.position - self.body_1.position
r2 = c.position - self.body_2.position
# precompute normal mass, tangent mass, and bias
rn1 = r1 @ c.normal
rn2 = r2 @ c.normal
k_normal = self.body_1.inv_mass + self.body_2.inv_mass
k_normal += (self.body_1.inv_I * ((r1 @ r1) - rn1 * rn1)
+ self.body_2.inv_I * ((r2 @ r2) - rn2 * rn2))
c.mass_normal = 1.0 / k_normal
tangent = cross(c.normal, 1.0)
rt1 = r1 @ tangent
rt2 = r2 @ tangent
k_tangent = self.body_1.inv_mass + self.body_2.inv_mass
k_tangent += (self.body_1.inv_I * ((r1 @ r1) - rt1 * rt1)
+ self.body_2.inv_I * ((r2 @ r2) - rt2 * rt2))
c.mass_tangent = 1.0 / k_tangent
c.bias = -k_bias_factor * inv_dt * min(0.0, c.separation + k_allowed_penetration)
if ACCUMULATE_IMPULSES:
# apply normal + friction impulse
P = c.Pn * c.normal + c.Pt * tangent
self.body_1.velocity -= self.body_1.inv_mass * P
self.body_1.angular_velocity -= self.body_1.inv_I * cross(r1, P)
self.body_2.velocity += self.body_2.inv_mass * P
self.body_2.angular_velocity += self.body_2.inv_I * cross(r2, P)
def apply_impulse(self) -> None:
b1 = self.body_1
b2 = self.body_2
for c in self.contacts:
c.r1 = c.position - b1.position
c.r2 = c.position - b2.position
# relative velocity at contact
dv = (b2.velocity + cross(b2.angular_velocity, c.r2)
- b1.velocity - cross(b1.angular_velocity, c.r1))
# compute normal impulse
vn = dv @ c.normal
d_Pn = c.mass_normal * (-vn + c.bias)
if ACCUMULATE_IMPULSES:
# clamp the accumulated impulse
Pn_0 = c.Pn
c.Pn = max(Pn_0 + d_Pn, 0.0)
d_Pn = c.Pn - Pn_0
else:
d_Pn = max(d_Pn, 0.0)
# apply contact impulse
Pn = d_Pn * c.normal
b1.velocity -= b1.inv_mass * Pn
b1.angular_velocity -= b1.inv_I * cross(c.r1, Pn)
b2.velocity += b2.inv_mass * Pn
b2.angular_velocity += b2.inv_I * cross(c.r2, Pn)
# relative velocity at contact
dv = (b2.velocity + cross(b2.angular_velocity, c.r2)
- b1.velocity - cross(b1.angular_velocity, c.r1))
tangent = cross(c.normal, 1.0)
vt = dv @ tangent
d_Pt = c.mass_tangent * (-vt)
if ACCUMULATE_IMPULSES:
# compute friction impulse
max_Pt = self.friction * c.Pn
# clamp friction
old_tangent_impulse = c.Pt
c.Pt = np.clip(old_tangent_impulse + d_Pt, -max_Pt, max_Pt)
d_Pt = c.Pt - old_tangent_impulse
else:
max_Pt = self.friction * d_Pn
d_Pt = np.clip(d_Pt, -max_Pt, max_Pt)
# apply contact impulses
Pt = d_Pt * tangent
b1.velocity -= b1.inv_mass * Pt
b1.angular_velocity -= b1.inv_I * cross(c.r1, Pt)
b2.velocity += b2.inv_mass * Pt
b2.angular_velocity += b2.inv_I * cross(c.r2, Pt)
if __name__ == '__main__':
b1 = Body(np.array([1, 2]))
b2 = Body(np.array([3, 4]))
a = Arbiter(b1, b2)
ak1 = ArbiterKey(b1, b2)
ak2 = ArbiterKey(b2, b1)
d = {ak1: a}
assert ak1 in d and ak2 in d and hash(ak1) == hash(ak2) and ak1 == ak2