-
Notifications
You must be signed in to change notification settings - Fork 47
/
data_utils.py
38 lines (28 loc) · 1.26 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import numpy as np
from torch.utils.data import Subset
def split_noniid(train_idcs, train_labels, alpha, n_clients):
'''
Splits a list of data indices with corresponding labels
into subsets according to a dirichlet distribution with parameter
alpha
'''
n_classes = train_labels.max()+1
label_distribution = np.random.dirichlet([alpha]*n_clients, n_classes)
class_idcs = [np.argwhere(train_labels[train_idcs]==y).flatten()
for y in range(n_classes)]
client_idcs = [[] for _ in range(n_clients)]
for c, fracs in zip(class_idcs, label_distribution):
for i, idcs in enumerate(np.split(c, (np.cumsum(fracs)[:-1]*len(c)).astype(int))):
client_idcs[i] += [idcs]
client_idcs = [train_idcs[np.concatenate(idcs)] for idcs in client_idcs]
return client_idcs
class CustomSubset(Subset):
'''A custom subset class with customizable data transformation'''
def __init__(self, dataset, indices, subset_transform=None):
super().__init__(dataset, indices)
self.subset_transform = subset_transform
def __getitem__(self, idx):
x, y = self.dataset[self.indices[idx]]
if self.subset_transform:
x = self.subset_transform(x)
return x, y