-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
111 lines (93 loc) · 3.29 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import sys
from tensorflow import keras
import matplotlib.pyplot as plt
import h5py
import numpy as np
from keras.models import Model, load_model, save_model
from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten
from keras.layers import Dropout, Input
from keras.optimizers import Nadam
from keras.callbacks import TensorBoard
from keras import backend as K
import tensorflow as tf
from constants import *
class LRTensorBoard(TensorBoard):
def __init__(self, log_dir, **kwargs):
super().__init__(log_dir=log_dir, **kwargs)
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
logs.update({"lr": K.eval(self.model.optimizer.lr)})
super().on_epoch_end(epoch, logs)
def train(model_file):
showering_x = h5py.File("data/showering.wav.h5")["data"]
showering_y = np.zeros((showering_x.shape[0], CLASS_COUNT))
showering_y[:, 0] = 1
other_x = h5py.File("data/other.wav.h5")["data"]
other_y = np.zeros((other_x.shape[0], CLASS_COUNT))
other_y[:, 1] = 1
X = np.concatenate((showering_x, other_x))
y = np.concatenate((showering_y, other_y))
p = np.random.permutation(len(X))
X_shuf = X[p]
y_shuf = y[p]
print(X_shuf.shape, y_shuf.shape)
lr_schedule = keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate=1e-3, decay_steps=2200, decay_rate=0.9, staircase=True
)
if not model_file:
i = Input(shape=INPUT_DIMENSION)
m = Conv2D(16, (5, 5), activation="elu", padding="same")(i)
m = MaxPooling2D()(m)
m = Conv2D(32, (4, 4), activation="elu", padding="same")(m)
m = MaxPooling2D()(m)
m = Conv2D(64, (3, 3), activation="elu", padding="same")(m)
m = MaxPooling2D()(m)
m = Conv2D(128, (3, 3), activation="elu", padding="same")(m)
m = MaxPooling2D()(m)
m = Conv2D(256, (3, 3), activation="elu", padding="same")(m)
m = MaxPooling2D()(m)
m = Flatten()(m)
m = Dense(256, activation="elu")(m)
m = Dropout(0.5)(m)
o = Dense(OUTPUT_DIMENSION, activation="softmax")(m)
model = Model(inputs=i, outputs=o)
model.summary()
model.compile(
loss="categorical_crossentropy",
optimizer=Nadam(learning_rate=lr_schedule),
metrics=["accuracy"],
)
else:
model = keras.models.load_model(model_file)
my_callbacks = [
keras.callbacks.ModelCheckpoint(
filepath="./training/model.{epoch:02d}-{val_loss:.4f}.h5"
),
keras.callbacks.TensorBoard(log_dir="./logs"),
LRTensorBoard(log_dir="./logs"),
]
history = model.fit(
X_shuf,
y_shuf,
validation_split=0.25,
epochs=15,
batch_size=100,
verbose=1,
callbacks=my_callbacks,
)
save_model(model, "dolphin_model")
# summarize history for loss
plt.plot(history.history["loss"])
plt.plot(history.history["val_loss"])
plt.title("model loss")
plt.ylabel("loss")
plt.xlabel("epoch")
plt.legend(["train", "test"], loc="upper left")
plt.show()
if __name__ == "__main__":
tf.config.threading.set_intra_op_parallelism_threads(4)
tf.config.threading.set_intra_op_parallelism_threads(4)
if len(sys.argv) >= 3:
train(sys.argv[1])
else:
train(None)