-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPPO_LunarLander_inference.py
executable file
·71 lines (61 loc) · 2.66 KB
/
PPO_LunarLander_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import argparse
import torch
import gym
from PPO_LunarLander_train import GameContent, CPPO
from PIL import Image
def str2bool(b_str):
if b_str.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif b_str.lower() in ('no', 'false', 'f', 'n', '0'):
return False
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint_dir', type=str, default='./checkpoint', help='path to checkpoint')
parser.add_argument('--cuda', type=str2bool, default=False)
args = parser.parse_args()
if __name__ == '__main__':
############## Hyperparameters ##############
env_name = "LunarLander-v2"
render = True
save_gif = False
h_neurons = 1024 # number of variables in hidden layer
n_episodes = 200000 # num of episodes to run
max_timesteps = 500 # max timesteps in one episode
train_epochs = 4 # update policy for K epochs
lr = 0.0001 # parameters for learning rate
betas = (0.9, 0.999) # Adam β
gamma = 0.99 # discount factor
eps_clip = 0.2 # clip parameter for PPO
vloss_coef = 0.5 # clip parameter for PPO2
entropy_coef = 0.01
#############################################
device = torch.device("cuda" if args.cuda else "cpu")
# creating environment
env = gym.make(env_name)
dim_states = env.observation_space.shape[0]
dim_acts = 4
gamedata = GameContent()
ppo = CPPO(dim_states, dim_acts, h_neurons, lr, betas, gamma, train_epochs, eps_clip, vloss_coef, entropy_coef, device)
ppo.policy_ac.eval()
# map_location=torch.device('cpu') for cpu only if you have cuda then cancel it
lastname = args.checkpoint_dir + '/PPO_{}_last.pth'.format(env_name)
checkpoint = torch.load(lastname)
ppo.policy_ac.load_state_dict(checkpoint['state_dict'])
for ep in range(1, n_episodes+1):
ep_reward = 0
estates = env.reset()
for ts in range(max_timesteps):
action = ppo.policy_ac.interact(estates, gamedata)
estates, reward, done, _ = env.step(action)
ep_reward += reward
if render:
env.render()
if save_gif:
img = env.render(mode = 'rgb_array')
img = Image.fromarray(img)
img.save('./gif/{}.jpg'.format(ts))
if done:
break
print('Episode: {} \t Reward: {}'.format(ep, int(ep_reward)))
gamedata.ReleaseData()
ep_reward = 0
env.close()