forked from mfem/mfem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ex5.cpp
446 lines (381 loc) · 13.4 KB
/
ex5.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
// MFEM Example 5
//
// Compile with: make ex5
//
// Sample runs: ex5 -m ../data/square-disc.mesh
// ex5 -m ../data/star.mesh
// ex5 -m ../data/star.mesh -pa
// ex5 -m ../data/beam-tet.mesh
// ex5 -m ../data/beam-hex.mesh
// ex5 -m ../data/beam-hex.mesh -pa
// ex5 -m ../data/escher.mesh
// ex5 -m ../data/fichera.mesh
//
// Device sample runs:
// ex5 -m ../data/star.mesh -pa -d cuda
// ex5 -m ../data/star.mesh -pa -d raja-cuda
// ex5 -m ../data/star.mesh -pa -d raja-omp
// ex5 -m ../data/beam-hex.mesh -pa -d cuda
//
// Description: This example code solves a simple 2D/3D mixed Darcy problem
// corresponding to the saddle point system
//
// k*u + grad p = f
// - div u = g
//
// with natural boundary condition -p = <given pressure>.
// Here, we use a given exact solution (u,p) and compute the
// corresponding r.h.s. (f,g). We discretize with Raviart-Thomas
// finite elements (velocity u) and piecewise discontinuous
// polynomials (pressure p).
//
// The example demonstrates the use of the BlockOperator class, as
// well as the collective saving of several grid functions in
// VisIt (visit.llnl.gov) and ParaView (paraview.org) formats.
//
// We recommend viewing examples 1-4 before viewing this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
#include <algorithm>
using namespace std;
using namespace mfem;
// Define the analytical solution and forcing terms / boundary conditions
void uFun_ex(const Vector & x, Vector & u);
real_t pFun_ex(const Vector & x);
void fFun(const Vector & x, Vector & f);
real_t gFun(const Vector & x);
real_t f_natural(const Vector & x);
int main(int argc, char *argv[])
{
StopWatch chrono;
// 1. Parse command-line options.
const char *mesh_file = "../data/star.mesh";
int order = 1;
bool pa = false;
const char *device_config = "cpu";
bool visualization = 1;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
"--no-partial-assembly", "Enable Partial Assembly.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
// 2. Enable hardware devices such as GPUs, and programming models such as
// CUDA, OCCA, RAJA and OpenMP based on command line options.
Device device(device_config);
device.Print();
// 3. Read the mesh from the given mesh file. We can handle triangular,
// quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
// the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
// 4. Refine the mesh to increase the resolution. In this example we do
// 'ref_levels' of uniform refinement. We choose 'ref_levels' to be the
// largest number that gives a final mesh with no more than 10,000
// elements.
{
int ref_levels =
(int)floor(log(10000./mesh->GetNE())/log(2.)/dim);
for (int l = 0; l < ref_levels; l++)
{
mesh->UniformRefinement();
}
}
// 5. Define a finite element space on the mesh. Here we use the
// Raviart-Thomas finite elements of the specified order.
FiniteElementCollection *hdiv_coll(new RT_FECollection(order, dim));
FiniteElementCollection *l2_coll(new L2_FECollection(order, dim));
FiniteElementSpace *R_space = new FiniteElementSpace(mesh, hdiv_coll);
FiniteElementSpace *W_space = new FiniteElementSpace(mesh, l2_coll);
// 6. Define the BlockStructure of the problem, i.e. define the array of
// offsets for each variable. The last component of the Array is the sum
// of the dimensions of each block.
Array<int> block_offsets(3); // number of variables + 1
block_offsets[0] = 0;
block_offsets[1] = R_space->GetVSize();
block_offsets[2] = W_space->GetVSize();
block_offsets.PartialSum();
std::cout << "***********************************************************\n";
std::cout << "dim(R) = " << block_offsets[1] - block_offsets[0] << "\n";
std::cout << "dim(W) = " << block_offsets[2] - block_offsets[1] << "\n";
std::cout << "dim(R+W) = " << block_offsets.Last() << "\n";
std::cout << "***********************************************************\n";
// 7. Define the coefficients, analytical solution, and rhs of the PDE.
ConstantCoefficient k(1.0);
VectorFunctionCoefficient fcoeff(dim, fFun);
FunctionCoefficient fnatcoeff(f_natural);
FunctionCoefficient gcoeff(gFun);
VectorFunctionCoefficient ucoeff(dim, uFun_ex);
FunctionCoefficient pcoeff(pFun_ex);
// 8. Allocate memory (x, rhs) for the analytical solution and the right hand
// side. Define the GridFunction u,p for the finite element solution and
// linear forms fform and gform for the right hand side. The data
// allocated by x and rhs are passed as a reference to the grid functions
// (u,p) and the linear forms (fform, gform).
MemoryType mt = device.GetMemoryType();
BlockVector x(block_offsets, mt), rhs(block_offsets, mt);
LinearForm *fform(new LinearForm);
fform->Update(R_space, rhs.GetBlock(0), 0);
fform->AddDomainIntegrator(new VectorFEDomainLFIntegrator(fcoeff));
fform->AddBoundaryIntegrator(new VectorFEBoundaryFluxLFIntegrator(fnatcoeff));
fform->Assemble();
fform->SyncAliasMemory(rhs);
LinearForm *gform(new LinearForm);
gform->Update(W_space, rhs.GetBlock(1), 0);
gform->AddDomainIntegrator(new DomainLFIntegrator(gcoeff));
gform->Assemble();
gform->SyncAliasMemory(rhs);
// 9. Assemble the finite element matrices for the Darcy operator
//
// D = [ M B^T ]
// [ B 0 ]
// where:
//
// M = \int_\Omega k u_h \cdot v_h d\Omega u_h, v_h \in R_h
// B = -\int_\Omega \div u_h q_h d\Omega u_h \in R_h, q_h \in W_h
BilinearForm *mVarf(new BilinearForm(R_space));
MixedBilinearForm *bVarf(new MixedBilinearForm(R_space, W_space));
if (pa) { mVarf->SetAssemblyLevel(AssemblyLevel::PARTIAL); }
mVarf->AddDomainIntegrator(new VectorFEMassIntegrator(k));
mVarf->Assemble();
if (!pa) { mVarf->Finalize(); }
if (pa) { bVarf->SetAssemblyLevel(AssemblyLevel::PARTIAL); }
bVarf->AddDomainIntegrator(new VectorFEDivergenceIntegrator);
bVarf->Assemble();
if (!pa) { bVarf->Finalize(); }
BlockOperator darcyOp(block_offsets);
TransposeOperator *Bt = NULL;
if (pa)
{
Bt = new TransposeOperator(bVarf);
darcyOp.SetBlock(0,0, mVarf);
darcyOp.SetBlock(0,1, Bt, -1.0);
darcyOp.SetBlock(1,0, bVarf, -1.0);
}
else
{
SparseMatrix &M(mVarf->SpMat());
SparseMatrix &B(bVarf->SpMat());
B *= -1.;
Bt = new TransposeOperator(&B);
darcyOp.SetBlock(0,0, &M);
darcyOp.SetBlock(0,1, Bt);
darcyOp.SetBlock(1,0, &B);
}
// 10. Construct the operators for preconditioner
//
// P = [ diag(M) 0 ]
// [ 0 B diag(M)^-1 B^T ]
//
// Here we use Symmetric Gauss-Seidel to approximate the inverse of the
// pressure Schur Complement
SparseMatrix *MinvBt = NULL;
Vector Md(mVarf->Height());
BlockDiagonalPreconditioner darcyPrec(block_offsets);
Solver *invM, *invS;
SparseMatrix *S = NULL;
if (pa)
{
mVarf->AssembleDiagonal(Md);
auto Md_host = Md.HostRead();
Vector invMd(mVarf->Height());
for (int i=0; i<mVarf->Height(); ++i)
{
invMd(i) = 1.0 / Md_host[i];
}
Vector BMBt_diag(bVarf->Height());
bVarf->AssembleDiagonal_ADAt(invMd, BMBt_diag);
Array<int> ess_tdof_list; // empty
invM = new OperatorJacobiSmoother(Md, ess_tdof_list);
invS = new OperatorJacobiSmoother(BMBt_diag, ess_tdof_list);
}
else
{
SparseMatrix &M(mVarf->SpMat());
M.GetDiag(Md);
Md.HostReadWrite();
SparseMatrix &B(bVarf->SpMat());
MinvBt = Transpose(B);
for (int i = 0; i < Md.Size(); i++)
{
MinvBt->ScaleRow(i, 1./Md(i));
}
S = Mult(B, *MinvBt);
invM = new DSmoother(M);
#ifndef MFEM_USE_SUITESPARSE
invS = new GSSmoother(*S);
#else
invS = new UMFPackSolver(*S);
#endif
}
invM->iterative_mode = false;
invS->iterative_mode = false;
darcyPrec.SetDiagonalBlock(0, invM);
darcyPrec.SetDiagonalBlock(1, invS);
// 11. Solve the linear system with MINRES.
// Check the norm of the unpreconditioned residual.
int maxIter(1000);
real_t rtol(1.e-6);
real_t atol(1.e-10);
chrono.Clear();
chrono.Start();
MINRESSolver solver;
solver.SetAbsTol(atol);
solver.SetRelTol(rtol);
solver.SetMaxIter(maxIter);
solver.SetOperator(darcyOp);
solver.SetPreconditioner(darcyPrec);
solver.SetPrintLevel(1);
x = 0.0;
solver.Mult(rhs, x);
if (device.IsEnabled()) { x.HostRead(); }
chrono.Stop();
if (solver.GetConverged())
{
std::cout << "MINRES converged in " << solver.GetNumIterations()
<< " iterations with a residual norm of "
<< solver.GetFinalNorm() << ".\n";
}
else
{
std::cout << "MINRES did not converge in " << solver.GetNumIterations()
<< " iterations. Residual norm is " << solver.GetFinalNorm()
<< ".\n";
}
std::cout << "MINRES solver took " << chrono.RealTime() << "s.\n";
// 12. Create the grid functions u and p. Compute the L2 error norms.
GridFunction u, p;
u.MakeRef(R_space, x.GetBlock(0), 0);
p.MakeRef(W_space, x.GetBlock(1), 0);
int order_quad = max(2, 2*order+1);
const IntegrationRule *irs[Geometry::NumGeom];
for (int i=0; i < Geometry::NumGeom; ++i)
{
irs[i] = &(IntRules.Get(i, order_quad));
}
real_t err_u = u.ComputeL2Error(ucoeff, irs);
real_t norm_u = ComputeLpNorm(2., ucoeff, *mesh, irs);
real_t err_p = p.ComputeL2Error(pcoeff, irs);
real_t norm_p = ComputeLpNorm(2., pcoeff, *mesh, irs);
std::cout << "|| u_h - u_ex || / || u_ex || = " << err_u / norm_u << "\n";
std::cout << "|| p_h - p_ex || / || p_ex || = " << err_p / norm_p << "\n";
// 13. Save the mesh and the solution. This output can be viewed later using
// GLVis: "glvis -m ex5.mesh -g sol_u.gf" or "glvis -m ex5.mesh -g
// sol_p.gf".
{
ofstream mesh_ofs("ex5.mesh");
mesh_ofs.precision(8);
mesh->Print(mesh_ofs);
ofstream u_ofs("sol_u.gf");
u_ofs.precision(8);
u.Save(u_ofs);
ofstream p_ofs("sol_p.gf");
p_ofs.precision(8);
p.Save(p_ofs);
}
// 14. Save data in the VisIt format
VisItDataCollection visit_dc("Example5", mesh);
visit_dc.RegisterField("velocity", &u);
visit_dc.RegisterField("pressure", &p);
visit_dc.Save();
// 15. Save data in the ParaView format
ParaViewDataCollection paraview_dc("Example5", mesh);
paraview_dc.SetPrefixPath("ParaView");
paraview_dc.SetLevelsOfDetail(order);
paraview_dc.SetCycle(0);
paraview_dc.SetDataFormat(VTKFormat::BINARY);
paraview_dc.SetHighOrderOutput(true);
paraview_dc.SetTime(0.0); // set the time
paraview_dc.RegisterField("velocity",&u);
paraview_dc.RegisterField("pressure",&p);
paraview_dc.Save();
// 16. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream u_sock(vishost, visport);
u_sock.precision(8);
u_sock << "solution\n" << *mesh << u << "window_title 'Velocity'" << endl;
socketstream p_sock(vishost, visport);
p_sock.precision(8);
p_sock << "solution\n" << *mesh << p << "window_title 'Pressure'" << endl;
}
// 17. Free the used memory.
delete fform;
delete gform;
delete invM;
delete invS;
delete S;
delete Bt;
delete MinvBt;
delete mVarf;
delete bVarf;
delete W_space;
delete R_space;
delete l2_coll;
delete hdiv_coll;
delete mesh;
return 0;
}
void uFun_ex(const Vector & x, Vector & u)
{
real_t xi(x(0));
real_t yi(x(1));
real_t zi(0.0);
if (x.Size() == 3)
{
zi = x(2);
}
u(0) = - exp(xi)*sin(yi)*cos(zi);
u(1) = - exp(xi)*cos(yi)*cos(zi);
if (x.Size() == 3)
{
u(2) = exp(xi)*sin(yi)*sin(zi);
}
}
// Change if needed
real_t pFun_ex(const Vector & x)
{
real_t xi(x(0));
real_t yi(x(1));
real_t zi(0.0);
if (x.Size() == 3)
{
zi = x(2);
}
return exp(xi)*sin(yi)*cos(zi);
}
void fFun(const Vector & x, Vector & f)
{
f = 0.0;
}
real_t gFun(const Vector & x)
{
if (x.Size() == 3)
{
return -pFun_ex(x);
}
else
{
return 0;
}
}
real_t f_natural(const Vector & x)
{
return (-pFun_ex(x));
}