forked from mfem/mfem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ex34.cpp
625 lines (554 loc) · 20.9 KB
/
ex34.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
// MFEM Example 34
//
// Compile with: make ex34
//
// Sample runs: ex34 -o 2
// ex34 -o 2 -pa -hex
//
// Device sample runs:
// ex34 -o 2 -pa -hex -d cuda
// ex34 -o 2 -no-pa -d cuda
//
// Description: This example code solves a simple magnetostatic problem
// curl curl A = J where the current density J is computed on a
// subset of the domain as J = -sigma grad phi. We discretize the
// vector potential with Nedelec finite elements, the scalar
// potential with Lagrange finite elements, and the current
// density with Raviart-Thomas finite elements.
//
// The example demonstrates the use of a SubMesh to compute the
// scalar potential and its associated current density which is
// then transferred to the original mesh and used as a source
// function.
//
// Note that this example takes certain liberties with the
// current density which is not necessarily divergence free
// as it should be. This was done to focus on the use of the
// SubMesh to transfer information between a full mesh and a
// sub-domain. A more rigorous implementation might employ an
// H(div) saddle point solver to obtain a divergence free J on
// the SubMesh. It would then also need to ensure that the r.h.s.
// of curl curl A = J does in fact lie in the range of the weak
// curl operator by performing a divergence cleaning procedure
// before the solve. After divergence cleaning the delta
// parameter would probably not be needed.
//
// This example is designed to make use of a specific mesh which
// has a known configuration of elements and boundary attributes.
// Other meshes could be used but extra care would be required to
// properly define the SubMesh and the necessary boundaries.
//
// We recommend viewing examples 1 and 3 before viewing this
// example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
static bool pa_ = false;
static bool algebraic_ceed_ = false;
void ComputeCurrentDensityOnSubMesh(int order,
bool visualization,
const Array<int> &phi0_attr,
const Array<int> &phi1_attr,
const Array<int> &jn_zero_attr,
GridFunction &j_cond);
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
const char *mesh_file = "../data/fichera-mixed.mesh";
Array<int> cond_attr;
Array<int> submesh_elems;
Array<int> sym_plane_attr;
Array<int> phi0_attr;
Array<int> phi1_attr;
Array<int> jn_zero_attr;
int ref_levels = 1;
int order = 1;
real_t delta_const = 1e-6;
bool mixed = true;
bool static_cond = false;
const char *device_config = "cpu";
bool visualization = true;
OptionsParser args(argc, argv);
args.AddOption(&ref_levels, "-r", "--refine",
"Number of times to refine the mesh uniformly.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&delta_const, "-mc", "--magnetic-cond",
"Magnetic Conductivity");
args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc",
"--no-static-condensation", "Enable static condensation.");
args.AddOption(&mixed, "-mixed", "--mixed-mesh", "-hex",
"--hex-mesh", "Mixed mesh of hexahedral mesh.");
args.AddOption(&pa_, "-pa", "--partial-assembly", "-no-pa",
"--no-partial-assembly", "Enable Partial Assembly.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
#ifdef MFEM_USE_CEED
args.AddOption(&algebraic_ceed_, "-a", "--algebraic", "-no-a", "--no-algebraic",
"Use algebraic Ceed solver");
#endif
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
if (!mixed || pa_)
{
mesh_file = "../data/fichera.mesh";
}
if (submesh_elems.Size() == 0)
{
if (strcmp(mesh_file, "../data/fichera-mixed.mesh") == 0)
{
submesh_elems.SetSize(5);
submesh_elems[0] = 0;
submesh_elems[1] = 2;
submesh_elems[2] = 3;
submesh_elems[3] = 4;
submesh_elems[4] = 9;
}
else if (strcmp(mesh_file, "../data/fichera.mesh") == 0)
{
submesh_elems.SetSize(7);
submesh_elems[0] = 10;
submesh_elems[1] = 14;
submesh_elems[2] = 34;
submesh_elems[3] = 36;
submesh_elems[4] = 37;
submesh_elems[5] = 38;
submesh_elems[6] = 39;
}
}
if (sym_plane_attr.Size() == 0)
{
if (strcmp(mesh_file, "../data/fichera-mixed.mesh") == 0 ||
strcmp(mesh_file, "../data/fichera.mesh") == 0)
{
sym_plane_attr.SetSize(8);
sym_plane_attr[0] = 9;
sym_plane_attr[1] = 10;
sym_plane_attr[2] = 11;
sym_plane_attr[3] = 12;
sym_plane_attr[4] = 13;
sym_plane_attr[5] = 14;
sym_plane_attr[6] = 15;
sym_plane_attr[7] = 16;
}
}
if (phi0_attr.Size() == 0)
{
if (strcmp(mesh_file, "../data/fichera-mixed.mesh") == 0 ||
strcmp(mesh_file, "../data/fichera.mesh") == 0)
{
phi0_attr.Append(2);
}
}
if (phi1_attr.Size() == 0)
{
if (strcmp(mesh_file, "../data/fichera-mixed.mesh") == 0 ||
strcmp(mesh_file, "../data/fichera.mesh") == 0)
{
phi1_attr.Append(23);
}
}
if (jn_zero_attr.Size() == 0)
{
if (strcmp(mesh_file, "../data/fichera-mixed.mesh") == 0 ||
strcmp(mesh_file, "../data/fichera.mesh") == 0)
{
jn_zero_attr.Append(25);
}
for (int i=0; i<sym_plane_attr.Size(); i++)
{
jn_zero_attr.Append(sym_plane_attr[i]);
}
}
// 2. Enable hardware devices such as GPUs, and programming models such as
// CUDA, OCCA, RAJA and OpenMP based on command line options.
Device device(device_config);
device.Print();
// 3. Read the (serial) mesh from the given mesh file on all processors. We
// can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
// and volume meshes with the same code.
Mesh mesh(mesh_file, 1, 1);
int dim = mesh.Dimension();
if (!mixed || pa_)
{
mesh.UniformRefinement();
if (ref_levels > 0)
{
ref_levels--;
}
}
int submesh_attr = -1;
if (cond_attr.Size() == 0 && submesh_elems.Size() > 0)
{
int max_attr = mesh.attributes.Max();
submesh_attr = max_attr + 1;
for (int i=0; i<submesh_elems.Size(); i++)
{
mesh.SetAttribute(submesh_elems[i], submesh_attr);
}
mesh.SetAttributes();
if (cond_attr.Size() == 0)
{
cond_attr.Append(submesh_attr);
}
}
// 4. Refine the serial mesh on all processors to increase the resolution. In
// this example we do 'ref_levels' of uniform refinement.
{
for (int l = 0; l < ref_levels; l++)
{
mesh.UniformRefinement();
}
}
// 5b. Extract a submesh covering a portion of the domain
SubMesh mesh_cond(SubMesh::CreateFromDomain(mesh, cond_attr));
// 6. Define a suitable finite element space on the SubMesh and compute
// the current density as an H(div) field.
RT_FECollection fec_cond_rt(order - 1, dim);
FiniteElementSpace fes_cond_rt(&mesh_cond, &fec_cond_rt);
GridFunction j_cond(&fes_cond_rt);
ComputeCurrentDensityOnSubMesh(order, visualization,
phi0_attr, phi1_attr, jn_zero_attr, j_cond);
// 6a. Save the SubMesh and associated current density in parallel. This
// output can be viewed later using GLVis:
// "glvis -np <np> -m cond_mesh -g cond_j"
{
ostringstream mesh_name, cond_name;
mesh_name << "cond.mesh";
cond_name << "cond_j.gf";
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
mesh_cond.Print(mesh_ofs);
ofstream cond_ofs(cond_name.str().c_str());
cond_ofs.precision(8);
j_cond.Save(cond_ofs);
}
// 6b. Send the current density, computed on the SubMesh, to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream port_sock(vishost, visport);
port_sock.precision(8);
port_sock << "solution\n" << mesh_cond << j_cond
<< "window_title 'Conductor J'"
<< "window_geometry 400 0 400 350" << flush;
}
// 7. Define a parallel finite element space on the full mesh. Here we use
// the H(curl) finite elements for the vector potential and H(div) for the
// current density.
ND_FECollection fec_nd(order, dim);
RT_FECollection fec_rt(order - 1, dim);
FiniteElementSpace fespace_nd(&mesh, &fec_nd);
FiniteElementSpace fespace_rt(&mesh, &fec_rt);
GridFunction j_full(&fespace_rt);
j_full = 0.0;
mesh_cond.Transfer(j_cond, j_full);
// 7a. Send the transferred current density to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock.precision(8);
sol_sock << "solution\n" << mesh << j_full
<< "window_title 'J Full'"
<< "window_geometry 400 430 400 350" << flush;
}
// 8. Determine the list of true (i.e. parallel conforming) essential
// boundary dofs. In this example, the boundary conditions are defined by
// marking all the boundary attributes except for those on a symmetry
// plane as essential (Dirichlet) and converting them to a list of true
// dofs.
Array<int> ess_tdof_list;
Array<int> ess_bdr;
if (mesh.bdr_attributes.Size())
{
ess_bdr.SetSize(mesh.bdr_attributes.Max());
ess_bdr = 1;
for (int i=0; i<sym_plane_attr.Size(); i++)
{
ess_bdr[sym_plane_attr[i]-1] = 0;
}
fespace_nd.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
}
// 9. Set up the parallel linear form b(.) which corresponds to the
// right-hand side of the FEM linear system, which in this case is
// (J,W_i) where J is given by the function H(div) field transferred
// from the SubMesh and W_i are the basis functions in the finite
// element fespace.
VectorGridFunctionCoefficient jCoef(&j_full);
LinearForm b(&fespace_nd);
b.AddDomainIntegrator(new VectorFEDomainLFIntegrator(jCoef));
b.Assemble();
// 10. Define the solution vector x as a parallel finite element grid
// function corresponding to fespace. Initialize x to zero.
GridFunction x(&fespace_nd);
x = 0.0;
// 11. Set up the parallel bilinear form corresponding to the EM diffusion
// operator curl muinv curl + delta I, by adding the curl-curl and the
// mass domain integrators. For standard magnetostatics equations choose
// delta << 1. Larger values of delta should make the linear system
// easier to solve at the expense of resembling a diffusive quasistatic
// magnetic field. A reasonable balance must be found whenever the mesh
// or problem setup is altered.
ConstantCoefficient muinv(1.0);
ConstantCoefficient delta(delta_const);
BilinearForm a(&fespace_nd);
if (pa_) { a.SetAssemblyLevel(AssemblyLevel::PARTIAL); }
a.AddDomainIntegrator(new CurlCurlIntegrator(muinv));
a.AddDomainIntegrator(new VectorFEMassIntegrator(delta));
// 12. Assemble the parallel bilinear form and the corresponding linear
// system, applying any necessary transformations such as: parallel
// assembly, eliminating boundary conditions, applying conforming
// constraints for non-conforming AMR, static condensation, etc.
if (static_cond) { a.EnableStaticCondensation(); }
a.Assemble();
OperatorPtr A;
Vector B, X;
a.FormLinearSystem(ess_tdof_list, x, b, A, X, B);
// 13. Solve the system AX=B
if (pa_) // Jacobi preconditioning in partial assembly mode
{
cout << "\nSolving for magnetic vector potential "
<< "using CG with a Jacobi preconditioner" << endl;
OperatorJacobiSmoother M(a, ess_tdof_list);
PCG(*A, M, B, X, 1, 1000, 1e-12, 0.0);
}
else
{
#ifndef MFEM_USE_SUITESPARSE
cout << "\nSolving for magnetic vector potential "
<< "using CG with a Gauss-Seidel preconditioner" << endl;
// 13a. Define a simple symmetric Gauss-Seidel preconditioner and use
// it to solve the system Ax=b with PCG.
GSSmoother M((SparseMatrix&)(*A));
PCG(*A, M, B, X, 1, 500, 1e-12, 0.0);
#else
cout << "\nSolving for magnetic vector potential "
<< "using UMFPack" << endl;
// 13a. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the
// system.
UMFPackSolver umf_solver;
umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
umf_solver.SetOperator(*A);
umf_solver.Mult(B, X);
#endif
}
// 14. Recover the parallel grid function corresponding to X. This is the
// local finite element solution on each processor.
a.RecoverFEMSolution(X, b, x);
// 15. Save the refined mesh and the solution in parallel. This output can
// be viewed later using GLVis: "glvis -np <np> -m mesh -g sol".
{
ostringstream mesh_name, sol_name;
mesh_name << "refined.mesh";
sol_name << "sol.gf";
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
mesh.Print(mesh_ofs);
ofstream sol_ofs(sol_name.str().c_str());
sol_ofs.precision(8);
x.Save(sol_ofs);
}
// 16. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock.precision(8);
sol_sock << "solution\n" << mesh << x
<< "window_title 'Vector Potential'"
<< "window_geometry 800 0 400 350" << flush;
}
// 17. Compute the magnetic flux as the curl of the solution
DiscreteLinearOperator curl(&fespace_nd, &fespace_rt);
curl.AddDomainInterpolator(new CurlInterpolator);
curl.Assemble();
curl.Finalize();
GridFunction dx(&fespace_rt);
curl.Mult(x, dx);
// 18. Save the curl of the solution in parallel. This output can be viewed
// later using GLVis: "glvis -np <np> -m mesh -g dsol".
{
ostringstream dsol_name;
dsol_name << "dsol.gf";
ofstream dsol_ofs(dsol_name.str().c_str());
dsol_ofs.precision(8);
dx.Save(dsol_ofs);
}
// 19. Send the curl of the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock.precision(8);
sol_sock << "solution\n" << mesh << dx
<< "window_title 'Magnetic Flux'"
<< "window_geometry 1200 0 400 350" << flush;
}
// 20. Clean exit
return 0;
}
void ComputeCurrentDensityOnSubMesh(int order,
bool visualization,
const Array<int> &phi0_attr,
const Array<int> &phi1_attr,
const Array<int> &jn_zero_attr,
GridFunction &j_cond)
{
// Extract the finite element space and mesh on which j_cond is defined
FiniteElementSpace &fes_cond_rt = *j_cond.FESpace();
Mesh &mesh_cond = *fes_cond_rt.GetMesh();
int dim = mesh_cond.Dimension();
// Define a parallel finite element space on the SubMesh. Here we use the H1
// finite elements for the electrostatic potential.
H1_FECollection fec_h1(order, dim);
FiniteElementSpace fes_cond_h1(&mesh_cond, &fec_h1);
// Define the conductivity coefficient and the boundaries associated with the
// fixed potentials phi0 and phi1 which will drive the current.
ConstantCoefficient sigmaCoef(1.0);
Array<int> ess_bdr_phi(mesh_cond.bdr_attributes.Max());
Array<int> ess_bdr_j(mesh_cond.bdr_attributes.Max());
Array<int> ess_bdr_tdof_phi;
ess_bdr_phi = 0;
ess_bdr_j = 0;
for (int i=0; i<phi0_attr.Size(); i++)
{
ess_bdr_phi[phi0_attr[i]-1] = 1;
}
for (int i=0; i<phi1_attr.Size(); i++)
{
ess_bdr_phi[phi1_attr[i]-1] = 1;
}
for (int i=0; i<jn_zero_attr.Size(); i++)
{
ess_bdr_j[jn_zero_attr[i]-1] = 1;
}
fes_cond_h1.GetEssentialTrueDofs(ess_bdr_phi, ess_bdr_tdof_phi);
// Setup the bilinear form corresponding to -Div(sigma Grad phi)
BilinearForm a_h1(&fes_cond_h1);
a_h1.AddDomainIntegrator(new DiffusionIntegrator(sigmaCoef));
a_h1.Assemble();
// Set the r.h.s. to zero
LinearForm b_h1(&fes_cond_h1);
b_h1 = 0.0;
// Setup the boundary conditions on phi
ConstantCoefficient one(1.0);
ConstantCoefficient zero(0.0);
GridFunction phi_h1(&fes_cond_h1);
phi_h1 = 0.0;
Array<int> bdr0(mesh_cond.bdr_attributes.Max()); bdr0 = 0;
for (int i=0; i<phi0_attr.Size(); i++)
{
bdr0[phi0_attr[i]-1] = 1;
}
phi_h1.ProjectBdrCoefficient(zero, bdr0);
Array<int> bdr1(mesh_cond.bdr_attributes.Max()); bdr1 = 0;
for (int i=0; i<phi1_attr.Size(); i++)
{
bdr1[phi1_attr[i]-1] = 1;
}
phi_h1.ProjectBdrCoefficient(one, bdr1);
{
OperatorPtr A;
Vector B, X;
a_h1.FormLinearSystem(ess_bdr_tdof_phi, phi_h1, b_h1, A, X, B);
// Solve the linear system
if (!pa_)
{
#ifndef MFEM_USE_SUITESPARSE
cout << "\nSolving for electric potential using PCG "
<< "with a Gauss-Seidel preconditioner" << endl;
// Use a simple symmetric Gauss-Seidel preconditioner with PCG.
GSSmoother M((SparseMatrix&)(*A));
PCG(*A, M, B, X, 1, 200, 1e-12, 0.0);
#else
cout << "\nSolving for electric potential using UMFPack" << endl;
// If MFEM was compiled with SuiteSparse,
// use UMFPACK to solve the system.
UMFPackSolver umf_solver;
umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
umf_solver.SetOperator(*A);
umf_solver.Mult(B, X);
#endif
}
else
{
cout << "\nSolving for electric potential using CG" << endl;
if (UsesTensorBasis(fes_cond_h1))
{
if (algebraic_ceed_)
{
ceed::AlgebraicSolver M(a_h1, ess_bdr_tdof_phi);
PCG(*A, M, B, X, 1, 400, 1e-12, 0.0);
}
else
{
OperatorJacobiSmoother M(a_h1, ess_bdr_tdof_phi);
PCG(*A, M, B, X, 1, 400, 1e-12, 0.0);
}
}
else
{
CG(*A, B, X, 1, 400, 1e-12, 0.0);
}
}
a_h1.RecoverFEMSolution(X, b_h1, phi_h1);
}
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream port_sock(vishost, visport);
port_sock.precision(8);
port_sock << "solution\n" << mesh_cond << phi_h1
<< "window_title 'Conductor Potential'"
<< "window_geometry 0 0 400 350" << flush;
}
// Solve for the current density J = -sigma Grad phi with boundary conditions
// J.n = 0 on the walls of the conductor but not on the ports where phi=0 and
// phi=1.
// J will be computed in H(div) so we need an RT mass matrix
BilinearForm m_rt(&fes_cond_rt);
m_rt.AddDomainIntegrator(new VectorFEMassIntegrator);
m_rt.Assemble();
// Assemble the (sigma Grad phi) operator
MixedBilinearForm d_h1(&fes_cond_h1, &fes_cond_rt);
d_h1.AddDomainIntegrator(new MixedVectorGradientIntegrator(sigmaCoef));
d_h1.Assemble();
// Compute the r.h.s, b_rt = sigma E = -sigma Grad phi
LinearForm b_rt(&fes_cond_rt);
d_h1.Mult(phi_h1, b_rt);
b_rt *= -1.0;
// Apply the necessary boundary conditions and solve for J in H(div)
cout << "\nSolving for current density in H(Div) "
<< "using diagonally scaled CG" << endl;
cout << "Size of linear system: "
<< fes_cond_rt.GetTrueVSize() << endl;
Array<int> ess_bdr_tdof_rt;
OperatorPtr M;
Vector B, X;
fes_cond_rt.GetEssentialTrueDofs(ess_bdr_j, ess_bdr_tdof_rt);
j_cond = 0.0;
m_rt.FormLinearSystem(ess_bdr_tdof_rt, j_cond, b_rt, M, X, B);
CGSolver cg;
cg.SetRelTol(1e-12);
cg.SetMaxIter(2000);
cg.SetPrintLevel(1);
cg.SetOperator(*M);
cg.Mult(B, X);
m_rt.RecoverFEMSolution(X, b_rt, j_cond);
}