-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathinference.py
226 lines (164 loc) · 6.5 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
from io import BytesIO
from absl import flags
import src.config
import sys
import tarfile
import tempfile
from six.moves import urllib
import numpy as np
from PIL import Image
import cv2, pdb, glob, argparse
from demo import main
import tensorflow as tf
class DeepLabModel(object):
"""Class to load deeplab model and run inference."""
INPUT_TENSOR_NAME = 'ImageTensor:0'
OUTPUT_TENSOR_NAME = 'SemanticPredictions:0'
INPUT_SIZE = 513
FROZEN_GRAPH_NAME = 'frozen_inference_graph'
def __init__(self, tarball_path):
#"""Creates and loads pretrained deeplab model."""
self.graph = tf.Graph()
graph_def = None
# Extract frozen graph from tar archive.
tar_file = tarfile.open(tarball_path)
for tar_info in tar_file.getmembers():
if self.FROZEN_GRAPH_NAME in os.path.basename(tar_info.name):
file_handle = tar_file.extractfile(tar_info)
graph_def = tf.GraphDef.FromString(file_handle.read())
break
tar_file.close()
if graph_def is None:
raise RuntimeError('Cannot find inference graph in tar archive.')
with self.graph.as_default():
tf.import_graph_def(graph_def, name='')
self.sess = tf.Session(graph=self.graph)
def run(self, image):
"""Runs inference on a single image.
Args:
image: A PIL.Image object, raw input image.
Returns:
resized_image: RGB image resized from original input image.
seg_map: Segmentation map of `resized_image`.
"""
width, height = image.size
resize_ratio = 1.0 * self.INPUT_SIZE / max(width, height)
target_size = (int(resize_ratio * width), int(resize_ratio * height))
resized_image = image.convert('RGB').resize(target_size, Image.ANTIALIAS)
batch_seg_map = self.sess.run(
self.OUTPUT_TENSOR_NAME,
feed_dict={self.INPUT_TENSOR_NAME: [np.asarray(resized_image)]})
seg_map = batch_seg_map[0]
return resized_image, seg_map
def create_pascal_label_colormap():
"""Creates a label colormap used in PASCAL VOC segmentation benchmark.
Returns:
A Colormap for visualizing segmentation results.
"""
colormap = np.zeros((256, 3), dtype=int)
ind = np.arange(256, dtype=int)
for shift in reversed(range(8)):
for channel in range(3):
colormap[:, channel] |= ((ind >> channel) & 1) << shift
ind >>= 3
return colormap
def label_to_color_image(label):
"""Adds color defined by the dataset colormap to the label.
Args:
label: A 2D array with integer type, storing the segmentation label.
Returns:
result: A 2D array with floating type. The element of the array
is the color indexed by the corresponding element in the input label
to the PASCAL color map.
Raises:
ValueError: If label is not of rank 2 or its value is larger than color
map maximum entry.
"""
if label.ndim != 2:
raise ValueError('Expect 2-D input label')
colormap = create_pascal_label_colormap()
if np.max(label) >= len(colormap):
raise ValueError('label value too large.')
return colormap[label]
parser = argparse.ArgumentParser(description='Deeplab Segmentation')
parser.add_argument('-i', '--input_dir', type=str, required=True,help='Directory to save the output results. (required)')
parser.add_argument('-ht', '--height', type=int, required=True,help='Directory to save the output results. (required)')
args=parser.parse_args()
dir_name=args.input_dir;
## setup ####################
LABEL_NAMES = np.asarray([
'background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus',
'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike',
'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tv'
])
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
MODEL_NAME = 'xception_coco_voctrainval' # @param ['mobilenetv2_coco_voctrainaug', 'mobilenetv2_coco_voctrainval', 'xception_coco_voctrainaug', 'xception_coco_voctrainval']
_DOWNLOAD_URL_PREFIX = 'http://download.tensorflow.org/models/'
_MODEL_URLS = {
'mobilenetv2_coco_voctrainaug':
'deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz',
'mobilenetv2_coco_voctrainval':
'deeplabv3_mnv2_pascal_trainval_2018_01_29.tar.gz',
'xception_coco_voctrainaug':
'deeplabv3_pascal_train_aug_2018_01_04.tar.gz',
'xception_coco_voctrainval':
'deeplabv3_pascal_trainval_2018_01_04.tar.gz',
}
_TARBALL_NAME = _MODEL_URLS[MODEL_NAME]
model_dir = 'deeplab_model'
if not os.path.exists(model_dir):
tf.gfile.MakeDirs(model_dir)
download_path = os.path.join(model_dir, _TARBALL_NAME)
if not os.path.exists(download_path):
print('downloading model to %s, this might take a while...' % download_path)
urllib.request.urlretrieve(_DOWNLOAD_URL_PREFIX + _MODEL_URLS[MODEL_NAME],
download_path)
print('download completed! loading DeepLab model...')
MODEL = DeepLabModel(download_path)
print('model loaded successfully!')
#######################################################################################
#list_im=glob.glob(dir_name + '/*_img.png'); list_im.sort()
#for i in range(0,len(list_im)):
image = Image.open(dir_name)
#print("Image Type = ",type(image))
back = cv2.imread('sample_data/input/background.jpeg',cv2.IMREAD_COLOR)
res_im,seg=MODEL.run(image)
seg=cv2.resize(seg.astype(np.uint8),image.size)
mask_sel=(seg==15).astype(np.float32)
mask = 255*mask_sel.astype(np.uint8)
img = np.array(image)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
res = cv2.bitwise_and(img,img,mask = mask)
bg_removed = res + (255 - cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR))
#cv2.imshow("original image",img)
#cv2.imshow("mask",res)
#cv2.imshow('input image',bg_removed)
#cv2.waitKey(0)
#print("after processing = ",type(np.asarray(255*mask_sel)))
#
#
#print("back type = ",type(back))
#print("image type = ",type(np.asarray(image)))
#print("masksDL type = ",type(255*mask_sel.astype(np.uint8)))
#
#
#print("back shape = ", back.shape)
#print("image shape = ",np.asarray(image).shape)
#print("masksDL shape = ",255*mask_sel.astype(np.uint8).shape)
#back_align = alignImages(back, np.asarray(image), cv2.cvtColor(255*mask_sel.astype(np.uint8),cv2.COLOR_GRAY2RGB))
#bg_removed = remove_bg(np.asarray(image), back_align,cv2.cvtColor(255*mask_sel.astype(np.uint8),cv2.COLOR_GRAY2RGB))
#config = flags.FLAGS
#config(sys.argv)
# Using pre-trained model, change this to use your own.
#config.load_path = src.config.PRETRAINED_MODEL
#
#config.batch_size = 1
#cv2.imwrite(dir_name.replace('img','back'),remove_bg)
main(bg_removed,args.height,None)
#name= dir_name.replace('img','masksDL')
#cv2.imwrite(name,(255*mask_sel).astype(np.uint8))
#cv2.imwrite(dir_name.replace('img','back'),back_align)
#str_msg='\nDone: ' + dir_name
#print(str_msg)