-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrover_dephasing.m
49 lines (38 loc) · 1.34 KB
/
grover_dephasing.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
eta=.7;
globBound = @(d ) ((4.*eta)./(1-eta)).*((d-1)./(d+2/eta));
dimvec=2:1:6;
ndim=length(dimvec);
bounds=zeros(ndim,1);
hmats=cell(ndim);
for k=1:ndim
dim=dimvec(k);
dimIn=dim;
dimOut=dim;
npar=dim;
id=eye(dim);
fprintf("Dimension %d \n", dim)
%%%% Kraus operators used in the paper (non-minimal)
% nKraus=dim+1;
% KrausOps=zeros(dim*nKraus,dim);
% KrausOps( 1 : dim , :) = sqrt( eta ) * eye(dim);
% for i=2:nKraus
% KrausOps( (i-1)*dim +1 : i*dim , :)=sqrt(1-eta)*id(:,i-1)*id(i-1,:);
% end
%%%% Alternatively we can use the canonical Kraus operators (obtained from
%%%% diagonalizing the CJ matrix)
DepCh=DephasingChannel(dim,eta);
KrausDepCh=KrausOperators(DepCh);
nKraus=dim;
KrausOps=zeros(dim*nKraus,dim);
for i=1:nKraus
KrausOps( (i-1)*dim +1 : i*dim , :)=full(KrausDepCh{i});
end
KrausOpsDeriv = zeros( dimOut*nKraus*npar , dimIn );
for p=1:npar
for n=1:nKraus
KrausOpsDeriv( (p-1)*nKraus*dimOut + (n-1)*dimOut + 1 : (p-1)*nKraus*dimOut + n*dimOut , : ) = -1j*KrausOps( (n-1)*dimOut + 1 : n*dimOut , : )*id(:,p)*id(p,:);
end
end
[ bounds(k) , hmats{k}] = totalQFI_SDP(KrausOps,KrausOpsDeriv,npar,nKraus,'asymptotic',dimIn,dimOut);
end
plot(dimvec,bounds,'-o',dimvec,globBound(dimvec),'-x');