-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_functions.py
executable file
·650 lines (572 loc) · 21 KB
/
test_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
import time
from copy import deepcopy
from typing import Dict, Optional
import numpy as np
import scipy
import torch
from botorch.distributions.distributions import Kumaraswamy
from botorch.models.gp_regression import SingleTaskGP
from botorch.optim.utils import sample_all_priors
from botorch.test_functions.base import MultiObjectiveTestProblem
from botorch.test_functions.multi_objective import DTLZ2, VehicleSafety
from botorch.utils.gp_sampling import get_gp_samples
from gpytorch.constraints import GreaterThan
from gpytorch.kernels.matern_kernel import MaternKernel
from gpytorch.kernels.scale_kernel import ScaleKernel
from gpytorch.likelihoods.gaussian_likelihood import GaussianLikelihood
from gpytorch.priors import GammaPrior
from scipy.optimize import minimize
from torch import Tensor, square
# from torch.distributions import Beta
from torch.quasirandom import SobolEngine
# probit noise such that the DM makes 10% error for top 10% utilty using random X
probit_noise_dict = {
"vehiclesafety_5d3d_kumaraswamyproduct": 0.0203,
"dtlz2_8d4d_negl1dist": 0.0467,
"osy_6d8d_piecewiselinear": 2.4131,
"carcabdesign_7d9d_piecewiselinear": 0.1151,
"vehiclesafety_5d3d_piecewiselinear": 0.1587,
"dtlz2_8d4d_piecewiselinear": 0.1872,
"osy_6d8d_sigmodconstraints": 0.0299,
"carcabdesign_7d9d_linear": 0.0439,
}
def gen_rand_points(n, dim, bounds):
sobol = SobolEngine(dim, scramble=True)
X = sobol.draw(n).to(bounds)
X = X * (bounds[1, :] - bounds[0, :]) + bounds[0, :]
X = X.to(bounds)
return X
def gen_rand_X(n, problem):
return gen_rand_points(n, problem.dim, problem.bounds)
def find_max(problem, get_util):
problem_cpu = deepcopy(problem).cpu()
util_cpu = deepcopy(get_util).cpu()
def max_func_wrapper(x):
Y = problem_cpu.evaluate_true(torch.tensor(x)).cpu()
if len(Y.shape) == 1:
Y = Y.unsqueeze(0)
return -util_cpu(Y).numpy()
real_max = -np.inf
for i in range(10):
n_sample = int(128)
X = gen_rand_X(n_sample, problem_cpu)
Y = problem.evaluate_true(X)
util = get_util(Y)
x0 = X[util.argmax(), :].numpy()
res = minimize(
max_func_wrapper,
x0=x0,
bounds=problem_cpu.bounds.numpy().T,
)
proposed_max = util_cpu(problem_cpu.evaluate_true(torch.tensor(res.x))).item()
# print(i, proposed_max, x0)
if proposed_max > real_max:
real_max = proposed_max
real_max_X = torch.tensor(res.x)
return real_max_X, real_max
class AdaptedOSY(MultiObjectiveTestProblem):
r"""
Adapted OSY test problem from [Oszycka1995]_.
This is adapted from botorch implementation.
We negated the fs and treat gs a objectives so that the goal is to maximzie everything
"""
dim = 6
num_objectives = 8
_bounds = [
(0.0, 10.0),
(0.0, 10.0),
(1.0, 5.0),
(0.0, 6.0),
(1.0, 5.0),
(0.0, 10.0),
]
# Placeholder reference point
_ref_point = [0.0] * 8
def evaluate_true(self, X: Tensor) -> Tensor:
f1 = (
25 * (X[..., 0] - 2) ** 2
+ (X[..., 1] - 2) ** 2
+ (X[..., 2] - 1) ** 2
+ (X[..., 3] - 4) ** 2
+ (X[..., 4] - 1) ** 2
)
f2 = -(X ** 2).sum(-1)
g1 = X[..., 0] + X[..., 1] - 2.0
g2 = 6.0 - X[..., 0] - X[..., 1]
g3 = 2.0 - X[..., 1] + X[..., 0]
g4 = 2.0 - X[..., 0] + 3.0 * X[..., 1]
g5 = 4.0 - (X[..., 2] - 3.0) ** 2 - X[..., 3]
g6 = (X[..., 4] - 3.0) ** 2 + X[..., 5] - 4.0
return torch.stack([f1, f2, g1, g2, g3, g4, g5, g6], dim=-1)
class NegativeVehicleSafety(VehicleSafety):
def evaluate_true(self, X: Tensor) -> Tensor:
f = -super().evaluate_true(X)
Y_bounds = torch.tensor(
[
[-1.7040e03, -1.1708e01, -2.6192e-01],
[-1.6619e03, -6.2136e00, -4.2879e-02],
]
).to(X)
f = (f - Y_bounds[0, :]) / (Y_bounds[1, :] - Y_bounds[0, :])
return f
class CarCabDesign(MultiObjectiveTestProblem):
r"""RE9-7-1 car cab design from Tanabe & Ishibuchi (2020)"""
dim = 7
num_objectives = 9
_bounds = [
(0.5, 1.5),
(0.45, 1.35),
(0.5, 1.5),
(0.5, 1.5),
(0.875, 2.625),
(0.4, 1.2),
(0.4, 1.2),
]
_ref_point = [0.0, 0.0] # TODO: Determine proper reference point
def evaluate_true(self, X: Tensor) -> Tensor:
f = torch.empty(X.shape[:-1] + (self.num_objectives,), dtype=X.dtype, device=X.device)
X1 = X[..., 0]
X2 = X[..., 1]
X3 = X[..., 2]
X4 = X[..., 3]
X5 = X[..., 4]
X6 = X[..., 5]
X7 = X[..., 6]
# # stochastic variables
# X8 = 0.006 * (torch.randn_like(X1)) + 0.345
# X9 = 0.006 * (torch.randn_like(X1)) + 0.192
# X10 = 10 * (torch.randn_like(X1)) + 0.0
# X11 = 10 * (torch.randn_like(X1)) + 0.0
# not using stochastic variables for the real function
X8 = torch.zeros_like(X1)
X9 = torch.zeros_like(X1)
X10 = torch.zeros_like(X1)
X11 = torch.zeros_like(X1)
# First function
# negate the first function as we want minimize car weight
f[..., 0] = -(
1.98
+ 4.9 * X1
+ 6.67 * X2
+ 6.98 * X3
+ 4.01 * X4
+ 1.75 * X5
+ 0.00001 * X6
+ 2.73 * X7
)
# Second function
f[..., 1] = 1 - (
1.16 - 0.3717 * X2 * X4 - 0.00931 * X2 * X10 - 0.484 * X3 * X9 + 0.01343 * X6 * X10
)
# Third function
f[..., 2] = 0.32 - (
0.261
- 0.0159 * X1 * X2
- 0.188 * X1 * X8
- 0.019 * X2 * X7
+ 0.0144 * X3 * X5
+ 0.87570001 * X5 * X10
+ 0.08045 * X6 * X9
+ 0.00139 * X8 * X11
+ 0.00001575 * X10 * X11
)
# Fourth function
f[..., 3] = 0.32 - (
0.214
+ 0.00817 * X5
- 0.131 * X1 * X8
- 0.0704 * X1 * X9
+ 0.03099 * X2 * X6
- 0.018 * X2 * X7
+ 0.0208 * X3 * X8
+ 0.121 * X3 * X9
- 0.00364 * X5 * X6
+ 0.0007715 * X5 * X10
- 0.0005354 * X6 * X10
+ 0.00121 * X8 * X11
+ 0.00184 * X9 * X10
- 0.018 * X2 * X2
)
# Fifth function
f[..., 4] = 0.32 - (
0.74
- 0.61 * X2
- 0.163 * X3 * X8
+ 0.001232 * X3 * X10
- 0.166 * X7 * X9
+ 0.227 * X2 * X2
)
# SiXth function
tmp = (
(
28.98
+ 3.818 * X3
- 4.2 * X1 * X2
+ 0.0207 * X5 * X10
+ 6.63 * X6 * X9
- 7.77 * X7 * X8
+ 0.32 * X9 * X10
)
+ (
33.86
+ 2.95 * X3
+ 0.1792 * X10
- 5.057 * X1 * X2
- 11 * X2 * X8
- 0.0215 * X5 * X10
- 9.98 * X7 * X8
+ 22 * X8 * X9
)
+ (46.36 - 9.9 * X2 - 12.9 * X1 * X8 + 0.1107 * X3 * X10)
) / 3
f[..., 5] = 32 - tmp
# Seventh function
f[..., 6] = 32 - (
4.72
- 0.5 * X4
- 0.19 * X2 * X3
- 0.0122 * X4 * X10
+ 0.009325 * X6 * X10
+ 0.000191 * X11 * X11
)
# EighthEighth function
f[..., 7] = 4 - (
10.58
- 0.674 * X1 * X2
- 1.95 * X2 * X8
+ 0.02054 * X3 * X10
- 0.0198 * X4 * X10
+ 0.028 * X6 * X10
)
# Ninth function
f[..., 8] = 9.9 - (
16.45
- 0.489 * X3 * X7
- 0.843 * X5 * X6
+ 0.0432 * X9 * X10
- 0.0556 * X9 * X11
- 0.000786 * X11 * X11
)
Y_bounds = torch.tensor(
[
[
-4.2150e01,
-4.7829e-01,
-1.1563e02,
-7.2040e-03,
-1.8255e-01,
-1.0168e01,
2.7023e01,
-8.0731e00,
-6.4556e00,
],
# Old upper bound from 1e8 points
# [-16.0992, 0.9511, 112.7138, 0.2750, 0.1909, 14.4804, 28.9855, -2.4875, -0.8270],
# make upper bounds of constraints to be something > 0 so that it's possible to not violate the constraints
[-16.0992, 0.9511, 112.7138, 0.2750, 0.1909, 14.4804, 28.9855, 0.5, 0.5],
]
).to(f)
f = (f - Y_bounds[0, :]) / (Y_bounds[1, :] - Y_bounds[0, :])
# normalize f to between 0 and 1 roughly so that we won't disadvantage ParEGO
return f
# ======= Utility functions ==========
class OSYSigmoidConstraintsUtil(torch.nn.Module):
def __init__(self, Y_bounds):
super().__init__()
self.register_buffer("Y_bounds", Y_bounds)
def calc_raw_util_per_dim(self, Y):
Y_bounds = self.Y_bounds
obj_Y = Y[..., :2]
constr_Y = Y[..., 2:]
norm_obj_Y = (obj_Y - Y_bounds[0, :2]) / (Y_bounds[1, :2] - Y_bounds[0, :2])
obj_vals = norm_obj_Y.exp()
constr_vals = torch.sigmoid(
50
* constr_Y
/ torch.min(torch.stack((-Y_bounds[0, 2:], Y_bounds[1, 2:])), dim=0).values
)
return torch.cat((obj_vals, constr_vals), dim=-1)
def forward(self, Y, X=None):
util_vals = self.calc_raw_util_per_dim(Y)
constr_vals = util_vals[..., 2:]
obj_vals = util_vals[..., :2]
obj_sum = obj_vals.sum(-1)
constr_prod = constr_vals.prod(dim=-1)
util = obj_sum * constr_prod
return util
class NegDist(torch.nn.Module):
def __init__(self, ideal_point, p, square=False):
super().__init__()
self.register_buffer("ideal_point", ideal_point)
self.p = p
self.square = square
def forward(self, Y, X=None):
if len(Y.shape) == 1:
Y = Y.unsqueeze(0)
expanded_ideal = self.ideal_point.expand(Y.shape[:-2] + (1, -1)).contiguous()
dist = torch.cdist(Y, expanded_ideal, p=self.p).squeeze(-1)
if self.square:
return -dist.square()
else:
return -dist
class LinearUtil(torch.nn.Module):
def __init__(self, beta):
super().__init__()
self.register_buffer("beta", beta)
def calc_raw_util_per_dim(self, Y):
return Y * self.beta.to(Y)
def forward(self, Y, X=None):
return Y @ self.beta.to(Y)
class PiecewiseLinear(torch.nn.Module):
def __init__(self, beta1, beta2, thresholds):
super().__init__()
self.register_buffer("beta1", beta1)
self.register_buffer("beta2", beta2)
self.register_buffer("thresholds", thresholds)
def calc_raw_util_per_dim(self, Y):
# below thresholds
bt = Y < self.thresholds
b1 = self.beta1.expand(Y.shape)
b2 = self.beta2.expand(Y.shape)
shift = (b2 - b1) * self.thresholds
util_val = torch.empty_like(Y)
# util_val[bt] = Y[bt] * b1[bt]
util_val[bt] = Y[bt] * b1[bt] + shift[bt]
util_val[~bt] = Y[~bt] * b2[~bt]
return util_val
def forward(self, Y, X=None):
util_val = self.calc_raw_util_per_dim(Y)
util_val = util_val.sum(dim=-1)
return util_val
class KumaraswamyCDF(torch.nn.Module):
def __init__(self, concentration1, concentration2, Y_bounds):
super().__init__()
self.register_buffer("concentration1", concentration1)
self.register_buffer("concentration2", concentration2)
self.register_buffer("Y_bounds", Y_bounds)
self.kdist = Kumaraswamy(concentration1, concentration2)
def calc_raw_util_per_dim(self, Y):
Y_bounds = self.Y_bounds
Y = (Y - Y_bounds[0, :]) / (Y_bounds[1, :] - Y_bounds[0, :])
eps = 1e-6
Y = torch.clamp(Y, min=eps, max=1 - eps)
util_val = self.kdist.cdf(Y)
return util_val
def forward(self, Y, X=None):
util_val = self.calc_raw_util_per_dim(Y)
util_val = util_val[..., ::2] * util_val[..., 1::2]
util_val = util_val.sum(dim=-1)
return util_val
class KumaraswamyCDFProduct(KumaraswamyCDF):
def forward(self, Y, X=None):
util_val = self.calc_raw_util_per_dim(Y)
util_val = torch.prod(util_val, dim=-1)
return util_val
class PiecewiseUtil(torch.nn.Module):
def __init__(self, beta, thresholds, alphas, ymin, ymax):
super().__init__()
self.register_buffer("beta", beta)
self.thresholds = thresholds.to(beta)
self.alphas = alphas
self.shift = 1
self.pow_size = 4
self.ymin = ymin
n_max = (
self.calc_raw_util_per_dim(
torch.full(size=(1, beta.shape[0]), fill_value=ymax).to(beta)
)
.max()
.item()
)
n_min = (
self.calc_raw_util_per_dim(
torch.full(size=(1, beta.shape[0]), fill_value=ymin).to(beta)
)
.min()
.item()
)
self.norm_range = (n_min, n_max)
def calc_raw_util_per_dim(self, Y):
# assuming Y is generally between 0 and 1.5
Y = torch.clamp(Y, min=self.ymin)
shift = self.shift
alphas = self.alphas
thresholds = self.thresholds
pow_size = self.pow_size
beta_mat = self.beta.expand(Y.shape)
thresholds_mat = thresholds.expand(Y.shape)
alphas_mat = alphas.expand(Y.shape)
below_threshold = Y < self.thresholds
util_val = torch.empty_like(Y)
util_val[below_threshold] = (
Y[below_threshold] - thresholds_mat[below_threshold] - shift
).pow(pow_size)
util_val[below_threshold] = (-util_val[below_threshold] + shift ** pow_size) * alphas_mat[
below_threshold
]
util_val[~below_threshold] = (
Y[~below_threshold] - thresholds_mat[~below_threshold]
) * beta_mat[~below_threshold]
return util_val
def forward(self, Y, X=None):
if len(Y.shape) == 1:
Y = Y.unsqueeze(0)
util_val = self.calc_raw_util_per_dim(Y)
util_val = (util_val - self.norm_range[0]) / (self.norm_range[1] - self.norm_range[0])
util_val_int = util_val
util_val_int = util_val_int[..., ::2] * util_val_int[..., 1::2]
util_val = util_val.sum(-1) + util_val_int.sum(-1)
return util_val
def problem_setup(problem_str, noisy=False, **tkwargs):
"""example problem_str:
"vehiclesafety_5d3d_kumaraswamyproduct"
"dtlz2_8d4d_negl1dist"
"osy_6d8d_piecewiselinear"
"carcabdesign_7d9d_piecewiselinear"
"vehiclesafety_5d3d_piecewiselinear"
"dtlz2_8d4d_piecewiselinear"
"osy_6d8d_sigmodconstraints"
"carcabdesign_7d9d_linear"
"""
problem_name, dims_str, util_type = problem_str.split("_")
Y_bounds = None
# dtlz 2 response surface
if problem_name == "dtlz2":
dims = dims_str.split("d")
X_dim, Y_dim = int(dims[0]), int(dims[1])
if dims_str == "8d4d":
# upper bound obatined using 1.2 * max
Y_bounds = torch.tensor(
[
[0.0000, 0.0000, 0.0000, 0.0000],
[2.5366, 2.5237, 2.5996, 2.6484],
]
).to(**tkwargs)
else:
raise RuntimeError("Unsupported problem_str")
if noisy:
# lowered noise level
noise_std = 0.05
# noise_std = 0.1
else:
noise_std = 0
problem = DTLZ2(dim=X_dim, num_objectives=Y_dim, noise_std=noise_std).to(**tkwargs)
# min-max normalization range for creating interaction terms
ymin, ymax = 0.0, 1.5
# utility functions for dtlz2
if util_type == "piecewiselinear":
if Y_dim == 4:
beta1 = torch.tensor([4, 3, 2, 1]).to(**tkwargs)
beta2 = torch.tensor([0.4, 0.3, 0.2, 0.1]).to(**tkwargs)
thresholds = torch.tensor([1.0] * Y_dim).to(**tkwargs)
get_util = PiecewiseLinear(beta1=beta1, beta2=beta2, thresholds=thresholds)
else:
raise RuntimeError("Unsupported Y_dim for piecewise linear utility")
elif util_type == "negl1dist":
get_util = NegDist(
problem.evaluate_true(torch.tensor([0.5] * X_dim, **tkwargs)), p=1, square=False
)
else:
raise RuntimeError("Unsupported utility!")
elif problem_name == "vehiclesafety":
if noisy:
# lowered noise level
noise_std = 0.05
else:
noise_std = 0
# we wish to minimize all metrics in the original problems
# hence we negate all values
problem = NegativeVehicleSafety(noise_std=noise_std).to(**tkwargs)
X_dim = problem.dim
Y_dim = problem.num_objectives
Y_bounds = torch.tensor(
[
[0, 0, 0],
[1, 1, 1],
]
).to(**tkwargs)
if util_type == "piecewiselinear":
beta1 = torch.tensor([2, 6, 8]).to(**tkwargs)
beta2 = torch.tensor([1, 2, 2]).to(**tkwargs)
thresholds = torch.tensor([0.5, 0.8, 0.8]).to(**tkwargs)
get_util = PiecewiseLinear(beta1=beta1, beta2=beta2, thresholds=thresholds)
elif util_type == "kumaraswamyproduct":
concentration1 = torch.tensor([0.5, 1, 1.5]).to(**tkwargs)
concentration2 = torch.tensor([1.0, 2.0, 3.0]).to(**tkwargs)
get_util = KumaraswamyCDFProduct(
concentration1=concentration1, concentration2=concentration2, Y_bounds=Y_bounds
)
else:
raise RuntimeError("Unsupported utility!")
elif problem_name == "carcabdesign":
if noisy:
# lowered noise level
noise_std = 0.02
else:
noise_std = 0
problem = CarCabDesign(noise_std=noise_std).to(**tkwargs)
X_dim = problem.dim
Y_dim = problem.num_objectives
Y_bounds = torch.tensor(
[
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1],
]
).to(**tkwargs)
if util_type == "linear":
beta = torch.tensor([2.25, 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25]).to(**tkwargs)
get_util = LinearUtil(beta=beta)
elif util_type == "piecewiselinear":
beta1 = torch.tensor([7.0, 6.75, 6.5, 6.25, 6.0, 5.75, 5.5, 5.25, 5.0]).to(**tkwargs)
beta2 = torch.tensor([0.5, 0.4, 0.375, 0.35, 0.325, 0.3, 0.275, 0.25, 0.225]).to(
**tkwargs
)
thresholds = torch.tensor([0.55, 0.54, 0.53, 0.52, 0.51, 0.5, 0.49, 0.48, 0.47]).to(
**tkwargs
)
get_util = PiecewiseLinear(beta1=beta1, beta2=beta2, thresholds=thresholds)
else:
raise RuntimeError("Unsupported utility!")
elif problem_name == "osy":
if noisy:
raise NotImplementedError("Noise level not yet determined!")
else:
noise_std = 0
if dims_str == "6d8d":
# Scale the empirical bounds by 1.1 to make sure we can include extreme values
Y_bounds = torch.tensor(
[
[
4.2358e-02,
-3.7138e02,
-1.9988e00,
-1.3999e01,
-7.9987e00,
-7.9990e00,
-5.9989e00,
-4.0000e00,
],
[1707.5742, -2.6934, 17.9988, 5.9988, 11.9993, 31.9968, 3.9999, 9.9983],
]
).to(**tkwargs)
problem = AdaptedOSY(noise_std=noise_std).to(**tkwargs)
X_dim = problem.dim
Y_dim = problem.num_objectives
if util_type == "piecewiselinear":
if Y_dim == 8:
beta1 = torch.tensor([0.02, 0.2, 10, 10, 10, 10, 10, 10]).to(**tkwargs)
beta2 = torch.tensor([0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]).to(**tkwargs)
thresholds = torch.tensor([1000, -100] + [0.0] * (Y_dim - 2)).to(**tkwargs)
else:
raise RuntimeError("Unsupported Y_dim for betacdf utility")
get_util = PiecewiseLinear(beta1=beta1, beta2=beta2, thresholds=thresholds)
elif util_type == "sigmodconstraints":
get_util = OSYSigmoidConstraintsUtil(Y_bounds=Y_bounds)
else:
raise RuntimeError("Unsupported problem!")
if problem_str in probit_noise_dict:
probit_noise = probit_noise_dict[problem_str]
else:
probit_noise = None
print(f"{problem_str}, noisy: {noisy}, noise_std: {problem.noise_std}")
return X_dim, Y_dim, problem, util_type, get_util, Y_bounds, probit_noise