-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsim_helpers.py
executable file
·1001 lines (889 loc) · 34.2 KB
/
sim_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import itertools
import random
import time
from copy import deepcopy
import cma
import torch
from botorch.acquisition import GenericMCObjective
from botorch.acquisition.monte_carlo import (qNoisyExpectedImprovement,
qSimpleRegret)
from botorch.acquisition.utils import prune_inferior_points
from botorch.exceptions.errors import UnsupportedError
from botorch.fit import fit_gpytorch_model
from botorch.models.gp_regression import SingleTaskGP
from botorch.models.pairwise_gp import (PairwiseGP,
PairwiseLaplaceMarginalLogLikelihood)
from botorch.models.transforms.input import (ChainedInputTransform, Normalize,
Warp)
from botorch.models.transforms.outcome import Standardize
from botorch.optim.optimize import optimize_acqf
from botorch.sampling.samplers import IIDNormalSampler, SobolQMCNormalSampler
from botorch.utils.multi_objective.scalarization import \
get_chebyshev_scalarization
from botorch.utils.sampling import sample_simplex
from gpytorch.kernels import (AdditiveStructureKernel, LinearKernel,
PolynomialKernel, ScaleKernel)
from gpytorch.kernels.rbf_kernel import RBFKernel
from gpytorch.mlls.exact_marginal_log_likelihood import \
ExactMarginalLogLikelihood
from gpytorch.priors.smoothed_box_prior import SmoothedBoxPrior
from gpytorch.priors.torch_priors import LogNormalPrior
from scipy.stats import kendalltau
from acquisition_functions import BALD, ExpectedUtility
from constants import *
from helper_classes import LearnedPrefereceObjective, PosteriorMeanDummySampler
from test_functions import gen_rand_points, gen_rand_X, problem_setup
def fit_outcome_model(X, Y, X_bounds):
# fit outcome model
input_tf = Normalize(d=X.shape[-1], bounds=X_bounds)
outcome_model = SingleTaskGP(
train_X=X,
train_Y=Y,
outcome_transform=Standardize(m=Y.shape[-1]),
input_transform=input_tf,
)
mll = ExactMarginalLogLikelihood(outcome_model.likelihood, outcome_model)
fit_gpytorch_model(mll)
return outcome_model.to(device=X.device, dtype=X.dtype)
def fit_pref_model(Y, comps, kernel, transform_input=True, Y_bounds=None, jitter=1e-4):
"""Preference model fitting helper function"""
Y_dim = Y.shape[-1]
if Y_bounds is None or not transform_input:
chained_transform = None
else:
normalize_tf = Normalize(d=Y_dim, bounds=Y_bounds)
warp_tf = Warp(
indices=list(range(Y_dim)),
# use a prior with median at 1.
# when a=1 and b=1, the Kumaraswamy CDF is the identity function
concentration1_prior=LogNormalPrior(0.0, 0.75 ** 0.5),
concentration0_prior=LogNormalPrior(0.0, 0.75 ** 0.5),
)
chained_transform = ChainedInputTransform(normalize_tf=normalize_tf, warp_tf=warp_tf)
if kernel == "default":
model = PairwiseGP(
Y.double().cpu(),
comps.double().cpu(),
jitter=jitter,
input_transform=chained_transform,
)
elif kernel == "linear":
covar_module = ScaleKernel(
LinearKernel(num_dimensions=Y.shape[-1]),
outputscale_prior=SmoothedBoxPrior(a=1, b=4),
)
model = PairwiseGP(
Y.double().cpu(),
comps.double().cpu(),
covar_module=covar_module,
jitter=jitter,
input_transform=chained_transform,
)
elif kernel == "additive":
covar_module = AdditiveStructureKernel(base_kernel=RBFKernel(), num_dims=Y.shape[1])
model = PairwiseGP(
Y.double().cpu(),
comps.double().cpu(),
covar_module=covar_module,
jitter=jitter,
input_transform=chained_transform,
)
elif kernel == "polynomial":
covar_module = ScaleKernel(
PolynomialKernel(power=2),
outputscale_prior=SmoothedBoxPrior(a=1, b=2),
)
model = PairwiseGP(
Y.double().cpu(),
comps.double().cpu(),
covar_module=covar_module,
jitter=jitter,
input_transform=chained_transform,
)
else:
raise RuntimeError("Unsupported kernel")
mll = PairwiseLaplaceMarginalLogLikelihood(model)
fit_gpytorch_model(mll)
model = model.to(device=Y.device, dtype=Y.dtype)
return model
def inject_comp_error(comp, util_diff, comp_noise_type, comp_noise):
std_norm = torch.distributions.normal.Normal(
torch.zeros(1, dtype=util_diff.dtype, device=util_diff.device),
torch.ones(1, dtype=util_diff.dtype, device=util_diff.device),
)
if comp_noise_type == "constant":
comp_error_p = comp_noise
elif comp_noise_type == "probit":
comp_error_p = 1 - std_norm.cdf(util_diff / comp_noise)
else:
raise UnsupportedError(f"Unsupported comp_noise_type: {comp_noise_type}")
# with comp_error_p probability to make a comparison mistake
flip_rand = torch.rand(util_diff.shape).to(util_diff)
to_flip = flip_rand < comp_error_p
flipped_comp = comp.clone()
if len(flipped_comp.shape) > 1:
assert (util_diff >= 0).all()
# flip tensor
flipped_comp[to_flip, 0], flipped_comp[to_flip, 1] = comp[to_flip, 1], comp[to_flip, 0]
else:
assert util_diff > 0
# flip a single pair
if to_flip:
flipped_comp[[0, 1]] = flipped_comp[[1, 0]]
return flipped_comp
def organize_comparisons(utils, comps, comp_noise_type, comp_noise):
"""
Given utility and comparisons in arbitrary orders,
re-order comparisons such that comparisons are in correct orders
with comparison noise injected
Args:
utils ([type]): [description]
comps ([type]): [description]
comp_noise_type ([type]): [description]
comp_noise ([type]): [description]
Returns:
[type]: [description]
"""
comps = deepcopy(comps)
pair_utils = utils[comps]
is_incorrect = pair_utils[..., 0] < pair_utils[..., 1]
comps[is_incorrect, 0], comps[is_incorrect, 1] = (
comps[is_incorrect, 1],
comps[is_incorrect, 0],
)
# inject comparison error
util_diff = utils[comps]
util_diff = util_diff[..., 0] - util_diff[..., 1]
comps = inject_comp_error(
comps, util_diff, comp_noise_type=comp_noise_type, comp_noise=comp_noise
)
comps = comps.to(device=utils.device)
return comps
def gen_comps(utility, comp_noise_type, comp_noise):
"""Create pairwise comparisons"""
cpu_util = utility.cpu()
comp_pairs = []
for i in range(cpu_util.shape[0] // 2):
i1 = i * 2
i2 = i * 2 + 1
if cpu_util[i1] > cpu_util[i2]:
new_comp = [i1, i2]
util_diff = cpu_util[i1] - cpu_util[i2]
else:
new_comp = [i2, i1]
util_diff = cpu_util[i2] - cpu_util[i1]
new_comp = torch.tensor(new_comp, device=utility.device, dtype=torch.long)
new_comp = inject_comp_error(new_comp, util_diff, comp_noise_type, comp_noise)
comp_pairs.append(new_comp)
comp_pairs = torch.stack(comp_pairs)
return comp_pairs
def gen_initial_real_data(n, problem, get_util):
# generate (noisy) ground truth data
X = gen_rand_X(n, problem)
Y = problem(X)
util = get_util(Y)
comps = gen_comps(util, comp_noise_type="constant", comp_noise=0)
return X, Y, util, comps
def gen_exp_comps(X, model, get_util, comp_noise_type, comp_noise, sample_outcome):
# generate posterior dras and make simulated comparisons based on that
if sample_outcome:
cand_Y = model.posterior(X).sample().squeeze(0)
else:
cand_Y = model.posterior(X).mean.clone().detach()
cand_util = get_util(cand_Y)
cand_comps = gen_comps(cand_util, comp_noise_type, comp_noise)
return cand_Y, cand_util, cand_comps
def gen_uncorrelated_candidates(q, Y_bounds, get_util, comp_noise_type, comp_noise):
# randomly selected points in Y space
cand_X = torch.tensor([]).to(Y_bounds)
cand_Y = gen_rand_points(q, Y_bounds.shape[-1], Y_bounds)
cand_util = get_util(cand_Y)
cand_comps = gen_comps(cand_util, comp_noise_type, comp_noise)
return cand_X, cand_Y, cand_util, cand_comps
def gen_random_candidates(model, q, problem, get_util, comp_noise_type, comp_noise, sample_outcome):
# generate training data
cand_X = gen_rand_X(q, problem=problem)
cand_Y, cand_util, cand_comps = gen_exp_comps(
cand_X, model, get_util, comp_noise_type, comp_noise, sample_outcome
)
return cand_X, cand_Y, cand_util, cand_comps
def gen_observed_candidates(
outcome_X, outcome_Y, selected_pairs, get_util, comp_noise_type, comp_noise
):
# randomly selected observed points
# all combination of index pairs
all_combo = list(itertools.combinations(range(outcome_Y.shape[0]), 2))
new_comp = all_combo[random.randrange(len(all_combo))]
# put the new pair in right order
new_util = get_util(outcome_Y[new_comp, :])
if new_util[1] > new_util[0]:
new_comp = (new_comp[1], new_comp[0])
util_diff = new_util[1] - new_util[0]
else:
util_diff = new_util[0] - new_util[1]
new_comp = inject_comp_error(new_comp, util_diff, comp_noise_type, comp_noise)
selected_pairs.append(new_comp)
unique_ids = torch.tensor(selected_pairs).flatten().unique().tolist()
id_map = dict(zip(unique_ids, range(len(unique_ids))))
# construct all candidate values (instead of only new ones)
all_cand_X = outcome_X[unique_ids, :]
all_cand_Y = outcome_Y[unique_ids, :]
all_cand_util = get_util(all_cand_Y)
all_cand_comps = torch.tensor([(id_map[p1], id_map[p2]) for p1, p2 in selected_pairs])
return all_cand_X, all_cand_Y, all_cand_util, all_cand_comps, selected_pairs
def gen_parego_candidates(
model, X, Y, q, problem, get_util, comp_noise_type, comp_noise, sample_outcome, gen_method
):
cand_X = []
for _ in range(q):
weights = sample_simplex(problem.num_objectives).squeeze().to(Y)
objective = GenericMCObjective(get_chebyshev_scalarization(weights=weights, Y=Y))
if gen_method == "ts":
n_sample = 1024
rand_X = gen_rand_X(n_sample, problem)
outcome_post = model.posterior(rand_X).sample().squeeze(0)
post_util = objective(outcome_post)
cand_X.append(rand_X[torch.argmax(post_util), :])
else:
try:
sampler = SobolQMCNormalSampler(num_samples=NUM_PAREGO_SAMPLES)
if gen_method == "qnei":
acq_func = qNoisyExpectedImprovement(
model=model,
X_baseline=X,
sampler=sampler,
objective=objective,
prune_baseline=True,
)
else:
raise RuntimeError
# optimize
# generate 1 candidate at a time, repeat q times
single_cand_X, _ = optimize_acqf(
acq_function=acq_func,
q=1,
bounds=problem.bounds,
num_restarts=NUM_RESTARTS,
raw_samples=RAW_SAMPLES, # used for intialization heuristic
options={"batch_limit": BATCH_LIMIT, "ftol": FTOL},
)
cand_X.append(single_cand_X.squeeze(0))
except UnsupportedError:
sampler = IIDNormalSampler(num_samples=NUM_PAREGO_SAMPLES)
if gen_method == "qnei":
acq_func = qNoisyExpectedImprovement(
model=model,
X_baseline=X,
sampler=sampler,
objective=objective,
prune_baseline=True,
)
else:
raise RuntimeError
# optimize
# generate 1 candidate at a time, repeat q times
single_cand_X, _ = optimize_acqf(
acq_function=acq_func,
q=1,
bounds=problem.bounds,
num_restarts=NUM_RESTARTS,
raw_samples=RAW_SAMPLES, # used for intialization heuristic
options={"batch_limit": BATCH_LIMIT, "ftol": FTOL},
)
cand_X.append(single_cand_X.squeeze(0))
cand_X = torch.stack(cand_X)
# "observe" new values from outcome model
cand_Y, cand_util, cand_comps = gen_exp_comps(
cand_X, model, get_util, comp_noise_type, comp_noise, sample_outcome
)
return cand_X, cand_Y, cand_util, cand_comps
def gen_true_util_data(model, X, Y, q, problem, get_util, comp_noise_type, comp_noise, gen_method):
sampler = SobolQMCNormalSampler(num_samples=NUM_TRUE_UTIL_SAMPLES)
true_obj = GenericMCObjective(get_util)
if gen_method == "ts":
cand_X = []
n_sample = 1024
for i in range(q):
rand_X = gen_rand_X(n_sample, problem)
outcome_post = model.posterior(rand_X).sample().squeeze(0)
post_util = true_obj(outcome_post)
cand_X.append(rand_X[torch.argmax(post_util), :])
cand_X = torch.stack(cand_X)
else:
if gen_method == "qnei":
acq_func = qNoisyExpectedImprovement(
model=model,
X_baseline=X[:1],
sampler=sampler,
objective=true_obj,
prune_baseline=False,
)
else:
raise RuntimeError
cand_X, _ = optimize_acqf(
acq_function=acq_func,
q=q,
bounds=problem.bounds,
num_restarts=NUM_RESTARTS,
raw_samples=RAW_SAMPLES, # used for intialization heuristic
options={"batch_limit": BATCH_LIMIT, "ftol": FTOL},
)
# "observe" new values from outcome model
cand_Y, cand_util, cand_comps = gen_exp_comps(
cand_X,
model,
get_util,
comp_noise_type,
comp_noise,
sample_outcome=False,
)
return cand_X, cand_Y, cand_util, cand_comps
def get_pref_acqf(
outcome_model,
pref_model,
X_baseline,
problem,
sampler_constructor,
gen_method,
**kwargs,
):
prune_pref_sample_num = kwargs.get("prune_pref_sample_num", 64)
prune_outcome_sample_num = kwargs.get("prune_outcome_sample_num", 64)
pref_mean = kwargs.get("pref_mean", False)
pref_sample_num = kwargs.get("pref_sample_num", NUM_LEARN_PREF_SAMPLES_UNEIPM)
outcome_mean = kwargs.get("outcome_mean", True)
outcome_sample_num = kwargs.get("outcome_sample_num", 1)
device = kwargs.get("device", torch.device("cpu"))
dtype = kwargs.get("dtype", torch.float)
print(f"Inside pref_mean: {pref_mean}, {pref_sample_num}, {outcome_mean}, {outcome_sample_num}")
prune_obj = LearnedPrefereceObjective(
pref_model=pref_model,
sampler=sampler_constructor(num_samples=prune_pref_sample_num),
use_mean=False,
).to(device=device, dtype=dtype)
if outcome_mean:
prune_sampler = PosteriorMeanDummySampler(model=outcome_model)
else:
prune_sampler = sampler_constructor(num_samples=prune_outcome_sample_num)
pruned_train_X = prune_inferior_points(
model=outcome_model,
X=X_baseline,
objective=prune_obj,
sampler=prune_sampler,
)
pref_obj = LearnedPrefereceObjective(
pref_model=pref_model,
sampler=sampler_constructor(num_samples=pref_sample_num),
use_mean=pref_mean,
)
if outcome_mean:
outcome_sampler = PosteriorMeanDummySampler(model=outcome_model)
else:
outcome_sampler = sampler_constructor(num_samples=outcome_sample_num)
if gen_method == "qnei":
acq_func = qNoisyExpectedImprovement(
model=outcome_model,
X_baseline=pruned_train_X,
sampler=outcome_sampler,
objective=pref_obj,
prune_baseline=False,
)
else:
raise RuntimeError(f"unsupported qnei gen method {gen_method}")
return acq_func
def gen_bald_candidates(
outcome_model, pref_model, problem, gen_method, Y_bounds, search_space_type, **kwargs
):
q = kwargs.get("q", 1)
num_restarts = kwargs.get("num_restarts", NUM_RESTARTS)
raw_samples = kwargs.get("raw_samples", RAW_SAMPLES)
batch_limit = kwargs.get("batch_limit", BATCH_LIMIT)
sequential = kwargs.get("sequential", False)
print(f"BALD q={q}, search_space_type={search_space_type}")
if gen_method == "ts":
raise RuntimeError("Can't do TS!")
if search_space_type == "y":
bounds = Y_bounds
else:
bounds = problem.bounds
acqf = BALD(
outcome_model=outcome_model, pref_model=pref_model, search_space_type=search_space_type
)
cand_X, acqf_val = optimize_acqf(
acq_function=acqf,
bounds=bounds,
q=q,
num_restarts=num_restarts,
raw_samples=raw_samples,
options={"batch_limit": batch_limit, "ftol": FTOL},
sequential=sequential,
)
if search_space_type == "rff":
cand_Y = acqf.gp_samples.posterior(cand_X).mean.squeeze(0).clone().detach()
elif search_space_type == "f_mean":
cand_Y = outcome_model.posterior(cand_X).mean.clone().detach()
elif search_space_type == "y":
cand_Y = cand_X
# create empty tensor so that it won't trigger issues when we append it to train_X
cand_X = torch.empty(0).to(cand_Y)
else:
raise UnsupportedError("Unsupported search_space_type!")
return cand_X, cand_Y, acqf_val
def gen_expected_util_candidates(
outcome_model, pref_model, problem, previous_winner, search_space_type, **kwargs
):
"""Analytical EUBO"""
q = 2 if previous_winner is None else 1
num_restarts = kwargs.get("num_restarts", NUM_RESTARTS)
raw_samples = kwargs.get("raw_samples", RAW_SAMPLES)
batch_limit = kwargs.get("batch_limit", BATCH_LIMIT)
sequential = kwargs.get("sequential", False)
Y_bounds = kwargs.get("Y_bounds", False)
return_acqf = kwargs.get("return_acqf", False)
if search_space_type == "y":
bounds = Y_bounds
else:
bounds = problem.bounds
acqf = ExpectedUtility(
preference_model=pref_model,
outcome_model=outcome_model,
previous_winner=previous_winner,
search_space_type=search_space_type,
)
cand_X, acqf_val = optimize_acqf(
acq_function=acqf,
bounds=bounds,
q=q,
num_restarts=num_restarts,
raw_samples=raw_samples,
options={"batch_limit": batch_limit, "ftol": FTOL},
sequential=sequential,
)
if search_space_type == "rff":
cand_Y = acqf.gp_samples.posterior(cand_X).mean.squeeze(0).clone().detach()
elif search_space_type == "f_mean":
cand_Y = outcome_model.posterior(cand_X).mean.clone().detach()
elif search_space_type == "one_sample":
post = outcome_model.posterior(cand_X)
cand_Y = (post.mean + post.variance.sqrt() * acqf.w).clone().detach()
elif search_space_type == "y":
cand_Y = cand_X
# create empty tensor so that it won't trigger issues when we append it to train_X
cand_X = torch.empty(0).to(cand_Y)
else:
raise UnsupportedError("Unsupported search_space_type!")
if return_acqf:
return cand_X, cand_Y, acqf_val, acqf
else:
return cand_X, cand_Y, acqf_val
def gen_pref_candidates(outcome_model, pref_model, X_baseline, problem, gen_method, **kwargs):
q = kwargs.get("q", 1)
num_restarts = kwargs.get("num_restarts", NUM_RESTARTS)
raw_samples = kwargs.get("raw_samples", RAW_SAMPLES)
batch_limit = kwargs.get("batch_limit", BATCH_LIMIT)
sequential = kwargs.get("sequential", False)
try:
sampler_constructor = SobolQMCNormalSampler
acqf = get_pref_acqf(
outcome_model,
pref_model,
X_baseline,
problem,
gen_method=gen_method,
sampler_constructor=sampler_constructor,
**kwargs,
)
cand_X, acqf_val = optimize_acqf(
acq_function=acqf,
bounds=problem.bounds,
q=q,
num_restarts=num_restarts,
raw_samples=raw_samples,
options={"batch_limit": batch_limit, "ftol": FTOL},
sequential=sequential,
)
except UnsupportedError:
"Switch to IID normal sampler if sobol fails"
sampler_constructor = IIDNormalSampler
acqf = get_pref_acqf(
outcome_model,
pref_model,
X_baseline,
problem,
gen_method=gen_method,
sampler_constructor=sampler_constructor,
**kwargs,
)
cand_X, acqf_val = optimize_acqf(
acq_function=acqf,
bounds=problem.bounds,
q=q,
num_restarts=num_restarts,
raw_samples=raw_samples,
options={"batch_limit": batch_limit, "ftol": FTOL},
sequential=sequential,
)
return cand_X, acqf_val
def gen_pref_candidates_eval(
outcome_model, pref_model, X_baseline, problem, q, gen_method, tkwargs
):
return gen_pref_candidates(
outcome_model=outcome_model,
pref_model=pref_model,
X_baseline=X_baseline,
problem=problem,
gen_method=gen_method,
q=q,
num_restarts=NUM_RESTARTS,
batch_limit=BATCH_LIMIT,
raw_samples=RAW_SAMPLES,
sequential=True,
pref_sample_num=NUM_EVAL_PREF_SAMPLES,
pref_mean=False,
outcome_sample_num=NUM_EVAL_OUTCOME_SAMPLES,
outcome_mean=False,
**tkwargs,
)
def gen_post_mean(outcome_model, pref_model, problem, **kwargs):
pref_sample_num = kwargs.get("pref_sample_num", 64)
outcome_sample_num = kwargs.get("outcome_sample_num", 64)
num_restarts = kwargs.get("num_restarts", NUM_RESTARTS)
batch_limit = kwargs.get("batch_limit", BATCH_LIMIT)
raw_samples = kwargs.get("raw_samples", RAW_SAMPLES)
use_mean = kwargs.get("use_mean", False)
pref_obj = LearnedPrefereceObjective(
pref_model=pref_model,
sampler=SobolQMCNormalSampler(num_samples=pref_sample_num),
use_mean=use_mean,
)
outcome_sampler = SobolQMCNormalSampler(num_samples=outcome_sample_num)
post_mean = qSimpleRegret(
outcome_model,
sampler=outcome_sampler,
objective=pref_obj,
)
cand_X, _ = optimize_acqf(
acq_function=post_mean,
bounds=problem.bounds,
q=1,
num_restarts=num_restarts,
raw_samples=raw_samples,
options={"batch_limit": batch_limit, "ftol": FTOL},
)
return cand_X
def gen_learn_candidates(
q,
problem,
get_util,
Y_bounds,
learn_strategy,
outcome_model,
pref_model,
gen_method,
X_baseline,
outcome_Y,
train_Y,
comp_noise_type,
comp_noise,
sample_outcome,
previous_winner_idx,
kernel,
**kwargs,
):
cand_X = None
cand_Y = None
# import pdb; pdb.set_trace()
for _ in range(2):
try:
if learn_strategy == "qnei":
# uNEI-PM
cand_X, _ = gen_pref_candidates(
outcome_model=outcome_model,
pref_model=pref_model,
X_baseline=X_baseline,
problem=problem,
gen_method=gen_method,
q=q,
**kwargs,
)
elif learn_strategy in ("bald_correct", "bald_yspace", "bald_rff"):
if learn_strategy == "bald_correct":
search_space_type = "f_mean"
elif learn_strategy == "bald_yspace":
search_space_type = "y"
elif learn_strategy == "bald_rff":
search_space_type = "rff"
else:
raise UnsupportedError("Uknown BALD search_space_type!")
cand_X, cand_Y, _ = gen_bald_candidates(
outcome_model=outcome_model,
pref_model=pref_model,
problem=problem,
gen_method=gen_method,
q=q,
Y_bounds=Y_bounds,
search_space_type=search_space_type,
**kwargs,
)
elif learn_strategy == "eubo_rff":
# EUBO-PS
cand_X, cand_Y, _ = gen_expected_util_candidates(
outcome_model=outcome_model,
pref_model=pref_model,
problem=problem,
previous_winner=None,
search_space_type="rff",
)
elif learn_strategy == "eubo_one_sample":
# EUBO-OPS
cand_X, cand_Y, _ = gen_expected_util_candidates(
outcome_model=outcome_model,
pref_model=pref_model,
problem=problem,
previous_winner=None,
search_space_type="one_sample",
)
elif learn_strategy == "eubo_y":
# EUBO-PS
cand_X, cand_Y, _ = gen_expected_util_candidates(
outcome_model=outcome_model,
pref_model=pref_model,
problem=problem,
previous_winner=None,
search_space_type="y",
Y_bounds=Y_bounds,
)
elif learn_strategy in ("random", "random_ps"):
# Surrogate(-ps) random
if learn_strategy == "random_ps":
sample_outcome = True
cand_X, cand_Y, _, _ = gen_random_candidates(
model=outcome_model,
q=q,
problem=problem,
get_util=get_util,
comp_noise_type=comp_noise_type,
comp_noise=comp_noise,
sample_outcome=sample_outcome,
)
elif learn_strategy == "uncorrelated":
# Uniform random
cand_X, cand_Y, _, _ = gen_uncorrelated_candidates(
q=q,
Y_bounds=Y_bounds,
get_util=get_util,
comp_noise_type=comp_noise_type,
comp_noise=comp_noise,
)
else:
raise RuntimeError("Unsupported learning strategy")
except Exception as e:
print(e)
print("Encounter exceptions... try again...")
continue
break
if cand_Y is None:
if sample_outcome:
cand_Y = outcome_model.posterior(cand_X).sample().squeeze(0).clone().detach()
else:
cand_Y = outcome_model.posterior(cand_X).mean.clone().detach()
return cand_X, cand_Y
def run_one_round_sim(
total_training_round,
init_round,
problem_str,
noisy,
comp_noise_type,
comp_noise,
outcome_model,
outcome_X,
outcome_Y,
train_X,
train_Y,
train_comps,
init_strategy,
learn_strategy,
gen_method,
keep_winner_prob,
sample_outcome,
kernel,
check_post_mean,
check_post_mean_every_k,
tkwargs,
selected_pairs, # for "observed" init/learn strategy only, set to [] by default
):
(
X_dim,
Y_dim,
problem,
util_type,
get_util,
Y_bounds,
probit_noise,
) = problem_setup(problem_str, noisy=noisy, **tkwargs)
pref_model = None
last_winner_idx = None
post_mean_X = []
post_mean_idx = []
run_times = []
acq_run_times = []
# if started with previous train_Y, initialize the pref model
if train_Y is not None:
pref_model = fit_pref_model(
train_Y, train_comps, kernel=kernel, transform_input=True, Y_bounds=Y_bounds
)
for i in range(total_training_round):
start_time = time.time()
if i < init_round or keep_winner_prob is None or learn_strategy == "observed":
# Init phase
current_strategy = init_strategy
# using initialization strategy
if init_strategy in ("random", "random_ps"):
if init_strategy == "random_ps":
sample_outcome = True
(pref_init_X, pref_init_Y, _, pref_init_comps,) = gen_random_candidates(
model=outcome_model,
q=2,
problem=problem,
get_util=get_util,
comp_noise_type=comp_noise_type,
comp_noise=comp_noise,
sample_outcome=sample_outcome,
)
elif init_strategy == "parego":
if train_X is None:
X_baseline = outcome_X
else:
X_baseline = torch.cat((train_X, outcome_X)).to(**tkwargs)
(pref_init_X, pref_init_Y, _, pref_init_comps,) = gen_parego_candidates(
model=outcome_model,
X=X_baseline,
Y=outcome_Y,
q=2,
problem=problem,
get_util=get_util,
comp_noise_type=comp_noise_type,
comp_noise=comp_noise,
sample_outcome=sample_outcome,
gen_method=gen_method,
)
elif init_strategy == "uncorrelated":
# not using sample_outcome
(pref_init_X, pref_init_Y, _, pref_init_comps,) = gen_uncorrelated_candidates(
q=2,
Y_bounds=Y_bounds,
get_util=get_util,
comp_noise_type=comp_noise_type,
comp_noise=comp_noise,
)
elif init_strategy == "observed":
# not using sample_outcome
(
pref_init_X,
pref_init_Y,
_,
pref_init_comps,
selected_pairs,
) = gen_observed_candidates(
outcome_X, outcome_Y, selected_pairs, get_util, comp_noise_type, comp_noise
)
# manually set train_X to be None so that we can update the whole training data
train_X = None
else:
raise RuntimeError
if train_X is None:
train_X = pref_init_X
train_Y = pref_init_Y
train_comps = pref_init_comps
else:
comps_shifted = pref_init_comps + train_Y.shape[0]
train_X = torch.cat((train_X, pref_init_X), dim=0)
train_Y = torch.cat((train_Y, pref_init_Y), dim=0)
train_comps = torch.cat((train_comps, comps_shifted), dim=0)
else:
# Learning phase
current_strategy = learn_strategy
X_baseline = torch.cat((train_X, outcome_X)).to(**tkwargs)
if last_winner_idx is not None and random.random() < keep_winner_prob:
keep_winner = True
q = 1
else:
keep_winner = False
q = 2
# generate candidate(s)
cand_X, cand_Y = gen_learn_candidates(
q=q,
problem=problem,
get_util=get_util,
Y_bounds=Y_bounds,
learn_strategy=learn_strategy,
outcome_model=outcome_model,
pref_model=pref_model,
gen_method=gen_method,
X_baseline=X_baseline,
outcome_Y=outcome_Y,
train_Y=train_Y,
comp_noise_type=comp_noise_type,
comp_noise=comp_noise,
sample_outcome=sample_outcome,
previous_winner_idx=last_winner_idx if keep_winner else None,
kernel=kernel,
**tkwargs,
)
if keep_winner:
new_util = get_util(cand_Y)[0]
last_winner_util = get_util(train_Y[[last_winner_idx], :])[0]
new_idx = train_Y.shape[0]
if new_util > last_winner_util:
new_comp = [new_idx, last_winner_idx]
util_diff = new_util - last_winner_util
else:
new_comp = [last_winner_idx, new_idx]
util_diff = last_winner_util - new_util
new_comp = torch.tensor(new_comp, device=train_Y.device, dtype=torch.long)
cand_comps = inject_comp_error(new_comp, util_diff, comp_noise_type, comp_noise)
cand_comps = cand_comps.unsqueeze(0)
else:
cand_util = get_util(cand_Y)
assert cand_util.shape[0] == 2
cand_comps = gen_comps(cand_util, comp_noise_type, comp_noise) + train_Y.shape[0]
train_X = torch.cat((train_X, cand_X)).to(**tkwargs)
train_Y = torch.cat((train_Y, cand_Y)).to(**tkwargs)
train_comps = torch.cat((train_comps, cand_comps))
last_winner_idx = train_comps[-1, 0]
acq_run_time = time.time() - start_time
acq_run_times.append(acq_run_time)
pref_model = fit_pref_model(
train_Y, train_comps, kernel=kernel, transform_input=True, Y_bounds=Y_bounds
)
if check_post_mean and (
(i % check_post_mean_every_k == 0) or (i == total_training_round - 1)
):
if current_strategy in ["uncorrelated"]:
use_mean = True
else:
use_mean = False
# evaluate posterior mean after each iteration
single_post_mean_X = gen_post_mean(
outcome_model, pref_model, problem, use_mean=use_mean
)
post_mean_X.append(single_post_mean_X)
post_mean_idx.append(i)
run_time = time.time() - start_time
run_times.append(run_time)
print(
f"iteration {i}: acquisition takes {acq_run_time:.1f}s; "
f"total runtime: {run_time:.1f}s"
)
if check_post_mean:
post_mean_X = torch.cat(post_mean_X, dim=0)
return (
train_X,
train_Y,
train_comps,
acq_run_times,
run_times,
post_mean_X,
post_mean_idx,
selected_pairs,