-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmulti_batch_sim.py
executable file
·540 lines (493 loc) · 21.1 KB
/
multi_batch_sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
import os
import pickle
import random
import time
import warnings
from copy import deepcopy
import fire
import torch
from gpytorch.utils.warnings import NumericalWarning
from pbo import gen_pbo_candidates, get_pbo_pe_comparisons
from sim_helpers import (fit_outcome_model, fit_pref_model,
gen_parego_candidates, gen_pref_candidates_eval,
gen_true_util_data, run_one_round_sim)
from test_functions import gen_rand_X, problem_setup
warnings.filterwarnings(
"ignore",
message="Could not update `train_inputs` with transformed inputs",
)
def run_multi_batch_sim(problem_str, noisy, init_seed, kernel, comp_noise_type, tkwargs):
problem_prefix = "_".join(problem_str.split("_")[:2])
fixed_init_X_dict = pickle.load(open("fixed_init_X_dict.pickle", "rb"))
(
X_dim,
Y_dim,
problem,
util_type,
get_util,
Y_bounds,
probit_noise,
) = problem_setup(problem_str, noisy=noisy, **tkwargs)
large_batch_size = False
if comp_noise_type == "constant":
comp_noise = 0.1
elif comp_noise_type == "probit":
comp_noise = probit_noise
elif comp_noise_type == "none":
comp_noise_type = "constant"
comp_noise = 0.0
else:
raise RuntimeError("Invalid comp_noise_type! Must be constant, probit, or none")
if X_dim <= 5:
init_n_outcome = 16
gen_batch_size = 8
# keep the top batch_size in the generated batch to simulate cherry picking
batch_size = 8
else:
init_n_outcome = 32
gen_batch_size = 16
batch_size = 16
n_batch = 3
keep_winner_prob = None
if large_batch_size:
init_n_outcome = init_n_outcome * 2
gen_batch_size = gen_batch_size * 2
batch_size = batch_size * 2
print("START MULTI-BATCH SIM")
print(f"init_n_outcome: {init_n_outcome}")
print(f"gen_batch_size: {gen_batch_size}")
print(f"batch_size: {batch_size}")
print(f"n_batch: {n_batch}")
print(f"comp_noise_type: {comp_noise_type}, comp_noise: {comp_noise}")
# (training method, next batch generating methods, if one-shot, sample_outcome)
policies = [
# Camera ready baselines
# PBO
("pbo_ei_pe_eubo", None, False, False), # PBO EUBO
("pbo_ei_pe_ts", None, False, False), # PBO TS
# EUBO family
("ri_eubo_y", "qnei", False, False), # EUBO-y0
("ri_eubo_one_sample", "qnei", False, False), # EUBO-zeta
("ri_eubo_rff", "qnei", False, False), # EUBO-f
# BALD family
("ri_bald_rff", "qnei", False, False), # BALD-f
("ri_bald_yspace", "qnei", False, False), # BALD-Y0
# Random baselines
("random_ps", "qnei", False, True), # Random-f
("uncorrelated", "qnei", False, None), # Random-Y0
# Non-PE baselines
("parego_only", "qnei", False, False), # MOBO
("random_exp", None, False, False), # Random experiment
("true_util_seq", "qnei", False, None), # True utility
# ======= one-shot baseilnes =========
# PBO
("pbo_ei_pe_ts", None, True, False),
("pbo_ei_pe_eubo", None, True, False),
# EUBO family
("ri_eubo_y", "qnei", True, False),
("ri_eubo_one_sample", "qnei", True, False),
("ri_eubo_rff", "qnei", True, False),
# BALD family
("ri_bald_rff", "qnei", True, False),
("ri_bald_yspace", "qnei", True, False),
# Random baselines
("random_ps", "qnei", True, True), # Random f tilde
("uncorrelated", "qnei", True, None), # Random-Y
]
# shuffle the order in case experiments auto-restarted
# so that we have roughly even number of exp run for each config
random.shuffle(policies)
output_filepath = (
f"data/sim_results/multi_batch/interactive/sim_{problem_str}_{kernel}.pickle"
# f"data/sim_results/multi_batch/one_shot/sim_{problem_str}_{kernel}.pickle"
# f"data/sim_results/multi_batch/probit_noise/sim_{problem_str}_{kernel}.pickle"
)
# ========= start simulation from here ==========
# initial observation
init_outcome_X = fixed_init_X_dict[problem_prefix][init_seed].to(Y_bounds)
init_outcome_Y = problem(init_outcome_X)
for policy, gen_method, one_shot, sample_outcome in policies:
# read past experiments to check repeated experiments
# re-read the file every time as it can be updated by other processses
if os.path.isfile(output_filepath):
past_sim_results = pickle.load(open(output_filepath, "rb"))
else:
past_sim_results = []
exp_set = set()
for sr in past_sim_results:
past_exp_signature = (
sr["init_seed"],
sr["problem_str"],
sr["policy"],
sr["one_shot"],
sr["comp_noise_type"],
sr["comp_noise"],
)
exp_set.add(past_exp_signature)
curr_exp_signature = (init_seed, problem_str, policy, one_shot, comp_noise_type, comp_noise)
if curr_exp_signature not in exp_set:
exp_set.add(curr_exp_signature)
else:
print(f"Experiment {curr_exp_signature} was previously run! Skipping...")
continue
# total training round per preference session (or total rounds for one-shot case)
n_pe_session_comp = 25
total_training_round = (n_pe_session_comp * 3) if one_shot else n_pe_session_comp
keep_winner_prob = None
all_run_times = []
all_acq_run_times = []
print(policy, gen_method, one_shot, sample_outcome)
outcome_X = init_outcome_X.clone()
outcome_Y = init_outcome_Y.clone()
# X/Y/comps for preference model
# not used for Parego only policy
train_X = None
train_Y = None
train_comps = None
init_strategy = None
learn_strategy = None
init_round = Y_dim * 2
if policy in (
"parego_only",
"qnehvi",
"true_util_seq",
"pbo_ts",
"pbo_ei",
"pbo_ei_pe_ts",
"pbo_ei_pe_eubo",
"random_exp",
):
keep_winner_prob = -1
for batch_i in range(n_batch):
print(
f"init_seed {init_seed} - {policy}, one-shot: {one_shot}, gen_method: {gen_method}, batch: {batch_i}, on {problem_str}, total_training_round: {total_training_round}",
)
outcome_model = fit_outcome_model(outcome_X, outcome_Y, X_bounds=problem.bounds)
X_baseline = outcome_X
# do not take Y here because the returned Y is a posterior sample
acq_start_time = time.time()
if policy == "parego_only":
outcome_cand_X, _, _, _, = gen_parego_candidates(
model=outcome_model,
X=X_baseline,
Y=outcome_Y,
q=gen_batch_size,
problem=problem,
get_util=get_util,
comp_noise_type=comp_noise_type,
comp_noise=comp_noise,
sample_outcome=sample_outcome,
gen_method=gen_method,
)
elif policy == "true_util_seq":
outcome_cand_X, _, _, _, = gen_true_util_data(
model=outcome_model,
X=X_baseline,
Y=outcome_Y,
q=gen_batch_size,
problem=problem,
get_util=get_util,
comp_noise_type=comp_noise_type,
comp_noise=comp_noise,
gen_method=gen_method,
)
elif policy[:3] == "pbo":
utils = get_util(outcome_Y)
if (not one_shot) or (one_shot and batch_i == 0):
if policy in ("pbo_ts", "pbo_ei"):
pe_strategy = "random"
elif policy == "pbo_ei_pe_ts":
pe_strategy = "ts"
elif policy == "pbo_ei_pe_eubo":
pe_strategy = "eubo"
else:
raise ValueError("Unsupported PE strategy for PBO")
train_comps = get_pbo_pe_comparisons(
outcome_X,
train_comps,
problem,
utils,
init_round,
total_training_round,
comp_noise_type,
comp_noise,
pe_strategy=pe_strategy,
)
observed_comp_error_rate = (
(utils[train_comps][..., 0] < utils[train_comps][..., 1])
.float()
.mean()
.item()
)
print(f"observed_comp_error_rate:{observed_comp_error_rate:.3f}")
else:
print("not doing comparisons for PBO one-shot after init batch")
print("train_comps shape:", train_comps.shape)
if policy == "pbo_ts":
pbo_gen_method = "ts"
elif policy[:6] == "pbo_ei":
pbo_gen_method = "ei"
else:
raise ValueError("Unknown PBO policy!")
outcome_cand_X = gen_pbo_candidates(
outcome_X=outcome_X,
train_comps=train_comps,
q=gen_batch_size,
problem=problem,
pbo_gen_method=pbo_gen_method,
)
elif policy == "random_exp":
outcome_cand_X = gen_rand_X(gen_batch_size, problem)
else:
raise ValueError("Unknown baseline policy")
acq_runtime = time.time() - acq_start_time
print(f"{policy} candidate gen time: {acq_runtime:.2f}s")
# noisy observation
outcome_cand_Y = problem(outcome_cand_X)
outcome_cand_util = get_util(outcome_cand_Y)
# select top candidates
select_idx = outcome_cand_util.topk(k=batch_size).indices
outcome_cand_X = outcome_cand_X[select_idx, :]
outcome_cand_Y = outcome_cand_Y[select_idx, :]
outcome_X = torch.cat((outcome_X, outcome_cand_X))
outcome_Y = torch.cat((outcome_Y, outcome_cand_Y))
else:
print(
f"init_seed {init_seed} - {policy}, {gen_method}, one-shot: {one_shot}, on {problem_str}, total_training_round: {total_training_round}",
)
train_X = None
train_Y = None
train_comps = None
selected_pairs = []
keep_winner_prob = 0
if policy == "ri_bald_yspace":
init_strategy = "uncorrelated"
learn_strategy = "bald_yspace"
elif policy == "ri_bald_correct":
init_strategy = "random_ps"
learn_strategy = "bald_correct"
elif policy == "ri_bald_rff":
init_strategy = "random_ps"
learn_strategy = "bald_rff"
elif policy == "ri_eubo_rff":
init_strategy = "random_ps"
learn_strategy = "eubo_rff"
elif policy == "ri_eubo_y":
init_strategy = "uncorrelated"
learn_strategy = "eubo_y"
elif policy == "ri_eubo_one_sample":
init_strategy = "random_ps"
learn_strategy = "eubo_one_sample"
elif policy == "ri_bald":
init_strategy = "random_ps"
learn_strategy = "bald"
elif policy == "random":
init_strategy = "random_ps"
learn_strategy = "random"
elif policy == "random_ps":
init_strategy = "random_ps"
learn_strategy = "random_ps"
elif policy == "uncorrelated":
init_strategy = "uncorrelated"
learn_strategy = "uncorrelated"
else:
raise RuntimeError("Unsupported learning policy")
if one_shot:
outcome_model = fit_outcome_model(outcome_X, outcome_Y, X_bounds=problem.bounds)
(
train_X,
train_Y,
train_comps,
acq_run_times,
run_times,
post_mean_X,
post_mean_idx,
selected_pairs,
) = run_one_round_sim(
total_training_round=total_training_round,
init_round=init_round,
problem_str=problem_str,
noisy=noisy,
comp_noise_type=comp_noise_type,
comp_noise=comp_noise,
outcome_model=outcome_model,
outcome_X=outcome_X,
outcome_Y=outcome_Y,
train_X=train_X,
train_Y=train_Y,
train_comps=train_comps,
init_strategy=init_strategy,
learn_strategy=learn_strategy,
gen_method=gen_method,
keep_winner_prob=keep_winner_prob,
sample_outcome=sample_outcome,
kernel=kernel,
check_post_mean=False,
check_post_mean_every_k=5,
tkwargs=tkwargs,
selected_pairs=selected_pairs,
)
pref_model = fit_pref_model(
train_Y,
train_comps,
kernel=kernel,
transform_input=True,
Y_bounds=Y_bounds,
)
all_acq_run_times = all_acq_run_times + acq_run_times
all_run_times = all_run_times + run_times
for batch_i in range(n_batch):
outcome_model = fit_outcome_model(outcome_X, outcome_Y, X_bounds=problem.bounds)
if not one_shot:
current_batch_init_round = max(0, init_round - batch_i * total_training_round)
print(f"batch {batch_i}, current_batch_init_round: {current_batch_init_round}")
(
train_X,
train_Y,
train_comps,
acq_run_times,
run_times,
post_mean_X,
post_mean_idx,
selected_pairs,
) = run_one_round_sim(
total_training_round=total_training_round,
init_round=current_batch_init_round,
problem_str=problem_str,
noisy=noisy,
comp_noise_type=comp_noise_type,
comp_noise=comp_noise,
outcome_model=outcome_model,
outcome_X=outcome_X,
outcome_Y=outcome_Y,
train_X=train_X,
train_Y=train_Y,
train_comps=train_comps,
init_strategy=init_strategy,
learn_strategy=learn_strategy,
gen_method=gen_method,
keep_winner_prob=keep_winner_prob,
sample_outcome=sample_outcome,
kernel=kernel,
check_post_mean=False,
check_post_mean_every_k=5,
tkwargs=tkwargs,
selected_pairs=selected_pairs,
)
pref_model = fit_pref_model(
train_Y,
train_comps,
kernel=kernel,
transform_input=True,
Y_bounds=Y_bounds,
)
all_acq_run_times = all_acq_run_times + acq_run_times
all_run_times = all_run_times + run_times
utils = get_util(train_Y)
observed_comp_error_rate = (
(utils[train_comps][..., 0] < utils[train_comps][..., 1])
.float()
.mean()
.item()
)
print(f"pref observed_comp_error_rate: {observed_comp_error_rate:.3f}")
# generate next batch candidate
# for baselines, only consider outcome_X as train_X are never observed for real
# and could be a good point
X_baseline = outcome_X
acq_start_time = time.time()
outcome_cand_X, _ = gen_pref_candidates_eval(
outcome_model=outcome_model,
pref_model=pref_model,
X_baseline=X_baseline,
problem=problem,
gen_method=gen_method,
q=gen_batch_size,
tkwargs=tkwargs,
)
acq_runtime = time.time() - acq_start_time
print(f"pref candidate gen time: {acq_runtime:.2f}s")
# noisy observation
outcome_cand_Y = problem(outcome_cand_X)
outcome_cand_util = get_util(outcome_cand_Y)
# select top candidates
select_idx = outcome_cand_util.topk(k=batch_size).indices
outcome_cand_X = outcome_cand_X[select_idx, :]
outcome_cand_Y = outcome_cand_Y[select_idx, :]
outcome_X = torch.cat((outcome_X, outcome_cand_X))
outcome_Y = torch.cat((outcome_Y, outcome_cand_Y))
train_X = None if train_X is None else deepcopy(train_X).detach().cpu()
train_Y = None if train_Y is None else deepcopy(train_Y).detach().cpu()
train_comps = None if train_comps is None else deepcopy(train_comps).detach().cpu()
single_result = {
"init_seed": init_seed,
"problem_str": problem_str,
"policy": policy,
"kernel": kernel,
"noise_std": problem.noise_std,
"init_round": init_round,
"total_training_round": total_training_round,
"one_shot": one_shot,
"run_times": all_run_times,
"acq_run_times": all_acq_run_times,
# method for generating candidates, qnei or ts
"gen_method": gen_method,
"init_strategy": init_strategy,
"learn_strategy": learn_strategy,
"keep_winner_prob": keep_winner_prob,
"comp_noise_type": comp_noise_type,
"comp_noise": comp_noise,
"sample_outcome": sample_outcome,
"init_n_outcome": init_n_outcome,
"gen_batch_size": gen_batch_size,
"batch_size": batch_size,
"n_batch": n_batch,
"outcome_X": deepcopy(outcome_X).detach().cpu(),
"outcome_Y": deepcopy(outcome_Y).detach().cpu(),
"train_X": train_X,
"train_Y": train_Y,
"train_comps": train_comps,
"device": str(tkwargs["device"]),
"dtype": str(tkwargs["dtype"]),
}
if os.path.isfile(output_filepath):
sim_results = pickle.load(open(output_filepath, "rb"))
else:
sim_results = []
sim_results.append(single_result)
pickle.dump(sim_results, open(output_filepath, "wb"))
torch.cuda.empty_cache()
def main(problem_str, noisy, init_seed, kernel, comp_noise_type, device):
"""
Args:
problem_str: problem string. see definition in test_functions.py
noisy: whether we have noisy observation of the resopnse surface
init_seed: initialization seed
kernel: "default" (RBF) or "linear" (might not be numerically stable)
comp_noise_type: "constant" or "probit"
"""
assert isinstance(noisy, bool)
dtype = torch.double
if device == "cpu":
device = torch.device("cpu")
else:
# Does not really work. Need to set the env var in command line.
# os.environ["CUDA_VISIBLE_DEVICES"] = f"{gpu}"
# "device": torch.device(f"cuda:{gpu}" if torch.cuda.is_available() else "cpu"),
# set device env variable externally
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tkwargs = {
"dtype": dtype,
"device": device,
}
warnings.filterwarnings("ignore", category=NumericalWarning)
run_multi_batch_sim(
problem_str=problem_str,
noisy=noisy,
init_seed=init_seed,
kernel=kernel,
comp_noise_type=comp_noise_type,
tkwargs=tkwargs,
)
if __name__ == "__main__":
fire.Fire(main)