This repository has been archived by the owner on Aug 28, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 274
/
test.lua
183 lines (151 loc) · 5.95 KB
/
test.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
--[[----------------------------------------------------------------------------
Copyright (c) 2016-present, Facebook, Inc. All rights reserved.
This source code is licensed under the BSD-style license found in the
LICENSE file in the root directory of this source tree. An additional grant
of patent rights can be found in the PATENTS file in the same directory.
------------------------------------------------------------------------------]]
local inn = require 'inn'
require 'fbcoco'
local utils = paths.dofile'utils.lua'
local mytester = torch.Tester()
local utiltest = torch.TestSuite()
function utiltest.bboxregression_parametrization()
local A = torch.rand(2) * 100
local B = torch.rand(2) * 100
local bbox = torch.Tensor{A[1], A[2], A[1] + torch.random(40), A[2] + torch.random(40)}
local tbox = torch.Tensor{B[1], B[2], B[1] + torch.random(40), B[2] + torch.random(40)}
local out = torch.zeros(4)
-- test 1-dim
utils.convertTo(out, bbox, tbox)
local out1 = torch.zeros(4)
utils.convertFrom(out1, bbox, out)
mytester:assertlt((out1 - tbox):abs():max(), 1e-8)
-- test 2-dim
local out2 = torch.zeros(1,4)
utils.convertTo(out2, bbox:view(1,4), tbox:view(1,4))
mytester:assertlt((out2:squeeze() - out):abs():max(), 1e-8)
local out3 = torch.zeros(1,4)
utils.convertFrom(out3, bbox:view(1,4), out:view(1,4))
mytester:assertlt((out3 - out1):abs():max(), 1e-8)
end
function utiltest.boxoverlap()
local a = torch.Tensor{
{0,0,100,100},
{0,50,100,150},
{50,0,150,100},
{50,50,150,150},
{100,100,200,200}
}
local b = {50,50,150,150}
local gt = torch.FloatTensor{1/7, 1/3, 1/3, 1, 1/7}
mytester:assertlt((utils.boxoverlap(a,b) - gt):max(),5e-3)
end
function utiltest.attachProposals()
local dataset_name = 'pascal_test2007'
local proposals_path = 'data/proposals/VOC2007/selective_search/test.t7'
local ds = dofile'DataSetJSON.lua':create(dataset_name, proposals_path)
ds:loadROIDB(500)
mytester:assertgt(ds:size(), 0)
-- go over some annotations and check that they are in the right format
for i=1,32 do
local id = torch.random(ds:size())
-- load an image and check that it has 3 channels
local im = ds:getImage(id)
mytester:asserteq(im:nDimension(), 3)
-- annotation check
local anno = ds:getAnnotation(1)
local obj = anno[1]
-- check that annotation has 'difficult' field
mytester:assert(obj.difficult ~= nil)
mytester:assertgt(obj.class_id, 0)
-- check that the bbox is x1,y1,x2,y2
mytester:assertgt(obj.bbox[3], obj.bbox[1])
mytester:assertgt(obj.bbox[4], obj.bbox[2])
-- check that proposals are in x1,y1,x2,y2 too
local proposals = ds:getROIBoxes(id)
mytester:assertgt(proposals:select(2,3):gt(proposals:select(2,1)):float():mean(), 0.9)
mytester:assertgt(proposals:select(2,4):gt(proposals:select(2,2)):float():mean(), 0.9)
end
end
function utiltest.merge_table()
local t1, t2, t3 = {x = 1}, {y = 2}, {z = 3}
local t = utils.merge_table{t1,t2,t3}
assert(t.x == t1.x and t.y == t2.y and t.z == t3.z)
end
local precision = 1e-3
local nntest = torch.TestSuite()
local function criterionJacobianTest1D(cri, input, target)
local eps = 1e-6
local _ = cri:forward(input, target)
local dfdx = cri:backward(input, target)
-- for each input perturbation, do central difference
local centraldiff_dfdx = torch.Tensor():resizeAs(dfdx)
local input_s = input:storage()
local centraldiff_dfdx_s = centraldiff_dfdx:storage()
for i=1,input:nElement() do
-- f(xi + h)
input_s[i] = input_s[i] + eps
local fx1 = cri:forward(input, target)
-- f(xi - h)
input_s[i] = input_s[i] - 2*eps
local fx2 = cri:forward(input, target)
-- f'(xi) = (f(xi + h) - f(xi - h)) / 2h
local cdfx = (fx1 - fx2) / (2*eps)
-- store f' in appropriate place
centraldiff_dfdx_s[i] = cdfx
-- reset input[i]
input_s[i] = input_s[i] + eps
end
-- compare centraldiff_dfdx with :backward()
local err = (centraldiff_dfdx - dfdx):abs():max()
mytester:assertlt(err, precision, 'error in difference between central difference and :backward')
end
function nntest.BBoxRegressionCriterion()
local bs = torch.random(16,32)
local input = torch.randn(bs, 84)
local bbox_targets = torch.randn(bs, 84):zero()
local bbox_labels = torch.Tensor(bs):random(2,21)
for i=1,bs do
bbox_targets[i]:narrow(1,(bbox_labels[i]-1)*4 + 1, 4)
end
local target = {bbox_labels, bbox_targets}
local cri = nn.BBoxRegressionCriterion()
criterionJacobianTest1D(cri, input, target)
end
function nntest.SequentialSplitBatch_ROIPooling()
local input = {
torch.randn(1,512,38,50):cuda(),
torch.randn(40,5):cuda():mul(50),
}
input[2]:select(2,1):fill(1)
local module = nn.SequentialSplitBatch(25)
:add(inn.ROIPooling(7,7,1/16))
:add(nn.View(-1):setNumInputDims(3))
:add(nn.Linear(7*7*512,9))
:cuda()
local output_mod = module:forward(input):clone()
output_mod = module:forward(input):clone()
local output_ref = module:replace(function(x)
if torch.typename(x) == 'nn.SequentialSplitBatch' then
torch.setmetatable(x, 'nn.Sequential')
end
return x
end):forward(input):clone()
mytester:asserteq((output_mod - output_ref):abs():max(), 0, 'SequentialSplitBatch err')
end
function nntest.SequentialSplitBatch_Tensor()
local input = torch.randn(40,512):cuda()
local module = nn.SequentialSplitBatch(25):add(nn.Linear(512,9)):cuda()
local output_mod = module:forward(input):clone()
output_mod = module:forward(input):clone()
local output_ref = module:replace(function(x)
if torch.typename(x) == 'nn.SequentialSplitBatch' then
torch.setmetatable(x, 'nn.Sequential')
end
return x
end):forward(input):clone()
mytester:asserteq((output_mod - output_ref):abs():max(), 0, 'SequentialSplitBatch err')
end
mytester:add(utiltest)
mytester:add(nntest)
mytester:run()