We introduce SONAR, a new multilingual and multimodal fixed-size sentence embedding space, with a full suite of speech and text encoders and decoders. It substantially outperforms existing sentence embeddings such as LASER3 and LabSE on the xsim and xsim++ multilingual similarity search tasks.
Speech segments can be embedded in the same SONAR embedding space using language-specific speech encoders trained in a teacher-student setting on speech transcription data. We also provide a single text decoder, which allows us to perform text-to-text and speech-to-text machine translation, including for zero-shot language and modality combinations.
SONAR stands for Sentence-level multimOdal and laNguage-Agnostic Representations
The full list of supported languages (along with download links) can be found here below.
You can install SONAR with pip install sonar-space
. Note that there is another sonar
package on pip that IS NOT this project, make sure to use sonar-space
in your dependencies.
If you want to install SONAR manually, you can install it localy. SONAR depends mainly on Fairseq2 and can be installed using (tested with python=3.8
)
pip install --upgrade pip
pip install -e .
If fairseq2 does not provide a build for your machine, check the readme of that project to build it locally.
fairseq2 will automatically download models into your $TORCH_HOME/hub
directory upon using the commands below.
from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline
t2vec_model = TextToEmbeddingModelPipeline(encoder="text_sonar_basic_encoder",
tokenizer="text_sonar_basic_encoder")
sentences = ['My name is SONAR.', 'I can embed the sentences into vectorial space.']
embeddings = t2vec_model.predict(sentences, source_lang="eng_Latn")
print(embeddings.shape)
# torch.Size([2, 1024])
from sonar.inference_pipelines.text import EmbeddingToTextModelPipeline
vec2text_model = EmbeddingToTextModelPipeline(decoder="text_sonar_basic_decoder",
tokenizer="text_sonar_basic_encoder")
reconstructed = vec2text_model.predict(embeddings, target_lang="eng_Latn", max_seq_len=512)
# max_seq_len is a keyword argument passed to the fairseq2 BeamSearchSeq2SeqGenerator.
print(reconstructed)
# ['My name is SONAR.', 'I can embed the sentences into vector space.']
from sonar.inference_pipelines.text import TextToTextModelPipeline
t2t_model = TextToTextModelPipeline(encoder="text_sonar_basic_encoder",
decoder="text_sonar_basic_decoder",
tokenizer="text_sonar_basic_encoder") # tokenizer is attached to both encoder and decoder cards
sentences = ['My name is SONAR.', 'I can embed the sentences into vectorial space.']
t2t_model.predict(sentences, source_lang="eng_Latn", target_lang="fra_Latn")
# ['Mon nom est SONAR.', "Je peux intégrer les phrases dans l'espace vectoriel."]
from sonar.inference_pipelines.speech import SpeechToEmbeddingModelPipeline
s2vec_model = SpeechToEmbeddingModelPipeline(encoder="sonar_speech_encoder_eng")
s2vec_model.predict(["./tests/integration_tests/data/audio_files/audio_1.wav",
"./tests/integration_tests/data/audio_files/audio_2.wav"]).shape
# torch.Size([2, 1024])
import torchaudio
inp, sr = torchaudio.load("./tests/integration_tests/data/audio_files/audio_1.wav")
assert sr == 16000, "Sample rate should be 16kHz"
s2vec_model.predict([inp]).shape
# torch.Size([1, 1024])
from sonar.inference_pipelines.speech import SpeechToTextModelPipeline
s2t_model = SpeechToTextModelPipeline(encoder="sonar_speech_encoder_eng",
decoder="text_sonar_basic_decoder",
tokenizer="text_sonar_basic_decoder")
import torchaudio
inp, sr = torchaudio.load("./tests/integration_tests/data/audio_files/audio_1.wav")
assert sr == 16000, "Sample rate should be 16kHz"
# passing loaded audio files
s2t_model.predict([inp], target_lang="eng_Latn")
# ['Television reports show white smoke coming from the plant.']
# passing multiple wav files
s2t_model.predict(["./tests/integration_tests/data/audio_files/audio_1.wav",
"./tests/integration_tests/data/audio_files/audio_2.wav"], target_lang="eng_Latn")
# ['Television reports show white smoke coming from the plant.',
# 'These couples may choose to make an adoption plan for their baby.']
BLASER 2.0 is a family of models for automatic evaluation of machine translation quality based on SONAR embeddings. They predict cross-lingual semantic similarity between the translation and the source (optionally, also using a reference translation).
from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline
from sonar.models.blaser.loader import load_blaser_model
blaser_ref = load_blaser_model("blaser_2_0_ref").eval()
blaser_qe = load_blaser_model("blaser_2_0_qe").eval()
text_embedder = TextToEmbeddingModelPipeline(encoder="text_sonar_basic_encoder", tokenizer="text_sonar_basic_encoder")
src_embs = text_embedder.predict(["Le chat s'assit sur le tapis."], source_lang="fra_Latn")
ref_embs = text_embedder.predict(["The cat sat on the mat."], source_lang="eng_Latn")
mt_embs = text_embedder.predict(["The cat sat down on the carpet."], source_lang="eng_Latn")
print(blaser_ref(src=src_embs, ref=ref_embs, mt=mt_embs).item()) # 4.688
print(blaser_qe(src=src_embs, mt=mt_embs).item()) # 4.708
Detailed model cards with more examples: facebook/blaser-2.0-ref, facebook/blaser-2.0-qe.
MuTox, the first highly multilingual audio-based classifier (binary) and dataset with toxicity labels. The dataset consists of 20k audio utterances for English and Spanish, and 4k for the other 19 languages, and uses the multi-model and multilingual encoders from SONAR. The output of the MuTox classifier is a logit of the evaluated being "toxic", according to the definition adopted in the corresponding dataset.
from sonar.models.mutox.loader import load_mutox_model
from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline
import torch
if torch.cuda.is_available():
device = torch.device("cuda:0")
dtype = torch.float16
else:
device = torch.device("cpu")
dtype = torch.float32
t2vec_model = TextToEmbeddingModelPipeline(
encoder="text_sonar_basic_encoder",
tokenizer="text_sonar_basic_encoder",
device=device,
)
text_column='lang_txt'
classifier = load_mutox_model(
"sonar_mutox",
device=device,
dtype=dtype,
).eval()
with torch.inference_mode():
emb = t2vec_model.predict(["De peur que le pays ne se prostitue et ne se remplisse de crimes."], source_lang='fra_Latn')
x = classifier(emb.to(device).to(dtype)) # tensor([[-19.7812]], device='cuda:0', dtype=torch.float16)
with torch.inference_mode():
emb = t2vec_model.predict(["She worked hard and made a significant contribution to the team."], source_lang='eng_Latn')
x = classifier(emb.to(device).to(dtype)) # tensor([[-53.5938]], device='cuda:0', dtype=torch.float16)
with torch.inference_mode():
emb = t2vec_model.predict(["El no tiene ni el más mínimo talento, todo lo que ha logrado ha sido gracias a sobornos y manipulaciones."], source_lang='spa_Latn')
x = classifier(emb.to(device).to(dtype)) # tensor([[-21.4062]], device='cuda:0', dtype=torch.float16)
For a CLI way of running the MuTox pipeline, go to Seamless Communication/.../MuTox.
See more complete demo notebooks :
The SONAR text encoder & decoder supports 200 languages. SONAR speech encoders support 37 languages.
Available text encoders/decoders
model | link |
---|---|
encoder | download |
decoder | download |
finetuned decoder | download |
tokenizer | download |
All 200 languages from the No Language Left Behind project are supported.
Available speech encoders
lang_code | language | link |
---|---|---|
arb | ms arabic | download |
asm | assamese | download |
bel | belarussian | download |
ben | bengali | download |
bos | bosnian | download |
bul | bulgarian | download |
cat | catalan | download |
ces | czech | download |
cmn | mandarin chinese | download |
cym | welsh | download |
dan | danish | download |
deu | german | download |
est | estonian | download |
fin | finnish | download |
fra | french | download |
guj | gujurati | download |
heb | hebrew | download |
hin | hindi | download |
hrv | croatian | download |
ind | indonesian | download |
ita | italian | download |
jpn | japanse | download |
kan | kannada | download |
kor | korean | download |
lao | lao | download |
lit | lithaian | download |
lvs | standard latvian | download |
mal | malayalam | download |
mar | marathi | download |
mkd | macedonian | download |
mlt | maltese | download |
npi | nepali | download |
nld | dutch | download |
ory | odia | download |
pan | punjabi | download |
pes | western persian | download |
pol | polish | download |
por | portuguese | download |
ron | romanian | download |
rus | russian | download |
slk | slovak | download |
slv | slovenian | download |
snd | sindhi | download |
srp | serbian | download |
spa | spanish | download |
swe | swedish | download |
swh | swahili | download |
tam | tamil | download |
tel | telugu | download |
tgl | tagalog | download |
tha | thai | download |
tur | turkish | download |
ukr | ukrainian | download |
urd | urdu | download |
uzn | northern uzbek | download |
vie | vietnamese | download |
yue | yue | download |
Please cite the paper when referencing the SONAR embedding space, encoders and decoders as:
@misc{Duquenne:2023:sonar_arxiv,
author = {Paul-Ambroise Duquenne and Holger Schwenk and Benoit Sagot},
title = {{SONAR:} Sentence-Level Multimodal and Language-Agnostic Representations},
publisher = {arXiv},
year = {2023},
url = {https://arxiv.org/abs/2308.11466},
}
See the CONTRIBUTING file for how to help out.
SONAR code is released under the MIT license (see CODE_LICENSE).
Some of SONAR models are released with the same MIT license, BUT BEWARE, some of them are released under a non commercial license (see NC_MODEL_LICENSE). Please refer to LICENSE for the details.