-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathcorrectness.py
99 lines (79 loc) · 3.12 KB
/
correctness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import datetime
import json
import os
import random
import logging
from copy import copy
import torch
import transformers
from benchmark import Arguments, BenchmarkArguments, process_cli_arguments
from data import get_data
from generate import load_model_and_tokenizer, setup
from self_speculation.autoregressive_generator import AutoRegressiveGenerationStrategy
from self_speculation.generator_base import (
GenerationConfig,
GenerationResult,
HuggingfaceLlamaGenerator,
)
from self_speculation.self_speculation_generator import (
SelfSpeculativeGenerationStrategy,
)
from tqdm import tqdm
log = logging.getLogger(__name__)
def main(args: Arguments, benchmark_arguments: BenchmarkArguments, generation_config: GenerationConfig, output_fname: str, seed = 0):
device = "cuda" if torch.cuda.is_available() else "cpu"
random.seed(seed)
torch.manual_seed(seed)
setup(args, device=device)
model, tokenizer = load_model_and_tokenizer(args, device=device)
ar_generation_config = copy(generation_config)
ar_generation_config.exit_layer = -1
ar_generation_config.num_speculations = -1
# initialize generator
spec_generator = HuggingfaceLlamaGenerator(
tokenizer=tokenizer,
model=model,
generation_strategy=SelfSpeculativeGenerationStrategy(),
)
ar_generator = HuggingfaceLlamaGenerator(
tokenizer=tokenizer,
model=model,
generation_strategy=AutoRegressiveGenerationStrategy(),
)
evaluation_set = get_data(
random_shuffle=benchmark_arguments.random_shuffle,
num_samples=benchmark_arguments.num_samples,
dataset=benchmark_arguments.dataset,
data_path=benchmark_arguments.data_path,
)
errors: int = 0
for i, example in enumerate(tqdm(evaluation_set)):
spec_response: GenerationResult = spec_generator.generate(
prompt=example.input,
generation_config=generation_config,
)
ar_response: GenerationResult = ar_generator.generate(
prompt=example.input,
# generation config to use the full model
generation_config=ar_generation_config,
)
if spec_response.decoded_prediction != ar_response.decoded_prediction:
errors += 1
log.info("Error found")
log.info(f"Spec response: {spec_response}")
log.info(f"AR response: {ar_response}")
metric_result = {"errors": errors, "error_pct": errors / len(evaluation_set)}
print(metric_result)
with open(output_fname, "w") as f:
json.dump(metric_result, f)
if __name__ == "__main__":
args, benchmark_arguments, generation_config = process_cli_arguments()
log.setLevel(level=logging.INFO) # TODO: set level based on argument
os.makedirs(args.output_dir, exist_ok=True)
main(args, benchmark_arguments, generation_config, f"{args.output_dir}/correctness_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.json")