This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·342 lines (275 loc) · 13 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
#!/usr/bin/env python3
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import os
import torch
import torch.nn as nn
from torch.nn import functional as F
from functools import partial
from timm.models.vision_transformer import VisionTransformer, _cfg, Attention
from timm.models.registry import register_model
from timm.models import create_model
import types
import copy
# teacher student pair
__all__ = [
'deit_tiny_patch16_224',
'deit_small_patch16_224',
'deit_base_patch16_224',
]
@register_model
def deit_tiny_patch16_224(pretrained=True, **kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
raise NotImplementedError
return model
@register_model
def deit_small_patch16_224(pretrained=True, **kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
raise NotImplementedError
return model
@register_model
def deit_base_patch16_224(pretrained=True, **kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
raise NotImplementedError
return model
def causalforward(self, x):
#print('in causal attn')
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.masked_fill(self.mask == 0, float('-inf')) # Causal mask
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def MakeCausalAttention(m):
for attr_str in dir(m):
target_attr = getattr(m, attr_str)
if type(target_attr) == Attention:
print('CausalAttention on ', attr_str)
target_attr.forward = types.MethodType(causalforward, target_attr)
for n, ch in m.named_children():
MakeCausalAttention(ch)
class TemporalPatchEmbed(nn.Module):
def __init__(self, img_size, patch_size, in_chans, embed_dim):
super().__init__()
'''
We repurpose some of the arguments.
Name of these arguments are kept consistent with timm, but there meaning is different.
Refer to the following:
img_size = num_frames_per_video
patch_size = No meaning yet
in_chans = backbone embed_dim
embed_dim = temporal head embed_dim
'''
self.num_patches = img_size
if in_chans == embed_dim:
self.embed_layer = nn.Identity()
else:
self.embed_layer = nn.Sequential(
nn.Linear(in_chans, embed_dim),
nn.LayerNorm(embed_dim, eps=1e-6),
)
def forward(self, x):
return self.embed_layer(x)
def temporal_forward(self, x):
B, T = x.size(0), x.size(1)
x = self.patch_embed(x) + self.tmp_embed[:,:T,:]
mask = torch.tril(torch.ones(T,T)).reshape(1, 1, T, T).to(x.device)
for b in self.blocks:
b.attn.mask = mask
x = self.blocks(x)
x = self.norm(x)
x = self.pre_logits(x)
out = self.head(x)
return out
def backbone_forward(self, x, pos_embed):
B, T = x.size(0), x.size(1)
# transformer op
x = self.patch_embed(x.flatten(0,1))
x = x + pos_embed.flatten(0,1)
cls_token = self.cls_token.expand(B*T, -1, -1) + self.cls_embed
x = torch.cat((cls_token, x), dim=1)
x = self.blocks(x)
x = self.norm(x)
x = self.pre_logits(x)
return x[:,0].reshape(B, T, -1)
class VideoTransformer(nn.Module):
def __init__(self, backbone, num_classes, num_frames_per_video, drop, drop_path, num_patches_in_glimpse, criterion, attntype, pretrained_dir, teacher=None):
super().__init__()
self.num_patches_in_glimpse = num_patches_in_glimpse
n_glimpse = 14 - num_patches_in_glimpse + 1
self.n_glimpse = n_glimpse
self.num_class = num_classes
self.num_segments = num_frames_per_video
self.attntype = attntype
self.teacher = teacher
# Define spatial backbone
self.backbone_name = backbone
self.backbone = create_model(backbone, pretrained=False, drop_rate=drop, drop_path_rate=drop_path, drop_block_rate=None)
self.backbone.patch_embed.img_size = [num_patches_in_glimpse*16, num_patches_in_glimpse*16]
self.backbone.num_patches_in_glimpse = num_patches_in_glimpse
self.backbone.forward = types.MethodType(backbone_forward, self.backbone)
del self.backbone.head
checkpoint = torch.load(os.path.join(pretrained_dir, 'ibot_vits_16_checkpoint_teacher.pth'), map_location=torch.device('cpu'))['state_dict']
self.backbone.load_state_dict(checkpoint)
pos_embed = self.backbone.pos_embed.data.clone()
self.backbone.pos_embed = nn.Parameter(pos_embed[:,1:,:])
self.backbone.cls_embed = nn.Parameter(pos_embed[:,:1,:])
# Define temporal head
in_chans=self.backbone.embed_dim
self.temporal_head = VisionTransformer(
img_size=num_frames_per_video, in_chans=in_chans, embed_layer=TemporalPatchEmbed,
num_classes=num_classes, embed_dim=2*self.backbone.embed_dim, depth=4, num_heads=6,
mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), drop_rate=drop, drop_path_rate=drop_path,
distilled=False)
MakeCausalAttention(self.temporal_head)
self.temporal_head.tmp_embed = nn.Parameter(self.temporal_head.pos_embed.data.clone())
del self.temporal_head.pos_embed # renaming pos_embed
self.temporal_head.tmp_embed = nn.Parameter(self.temporal_head.tmp_embed.data[:,1:].clone()) # removing cls embed
self.temporal_head.forward = types.MethodType(temporal_forward, self.temporal_head)
del self.temporal_head.cls_token
self.temploc_head = copy.deepcopy(self.temporal_head)
self.temploc_head.init_loc = nn.Parameter(torch.Tensor([0, 0]).reshape(1,1,2))
self.temploc_head.head = nn.Linear(self.temploc_head.embed_dim, 2, bias=False)
self.temploc_head.head.weight.data *= 0.1
if 'student' in self.attntype:
self.backbone.load_state_dict(self.teacher.backbone.state_dict())
self.temporal_head.load_state_dict(self.teacher.temporal_head.state_dict())
self.temploc_head.load_state_dict(self.teacher.temploc_head.state_dict())
self.forward = self.forward_student
elif 'teacher' in self.attntype:
self.backbone.patch_embed.img_size = [224,224]
self.forward = self.forward_teacher
self.criterion = criterion
@torch.jit.ignore
def no_weight_decay(self):
return ['backbone.cls_token',
'backbone.pos_embed',
'backbone.cls_embed',
'temporal_head.cls_token',
'temporal_head.tmp_embed',
'temploc_head.cls_token',
'temploc_head.tmp_embed',]
def forward_teacher(self, x, label_1hot):
B, T = x.size(0), x.size(1)
# forward with random
self.backbone.patch_embed.img_size = [224,224]
feat = self.backbone(x, self.backbone.pos_embed[None,...].repeat(B,T,1,1))
cls = self.temporal_head(feat)
loc = self.temploc_head(feat.detach())
L_cls = self.criterion(cls.reshape(B*T,-1), label_1hot[:,None,:].float().repeat(1, T, 1).reshape(B*T, -1)).mean()
loc = torch.cat([self.temploc_head.init_loc.repeat(B,1,1), loc[:,:-1]], 1)
if self.training:
if self.teacher is not None:
# distillation
self.teacher.eval()
with torch.no_grad():
teacher_logits = self.teacher(x)
L_tch = self.kld_loss(cls[:,-1,:], teacher_logits)
else:
L_tch = torch.zeros_like(L_cls)
# SSL for loc
copy_backbone = copy.deepcopy(self.backbone)
for p in copy_backbone.parameters(): p.requires_grad = False
copy_backbone.patch_embed.img_size = [self.num_patches_in_glimpse*16, self.num_patches_in_glimpse*16]
patches, pos, mask = self.prepare_patch(loc, x, copy_backbone.pos_embed)
feat_ = copy_backbone(patches, pos)
L_mse = F.mse_loss(feat_, feat.detach())
copy_temporal_head = copy.deepcopy(self.temporal_head)
for p in copy_temporal_head.parameters(): p.requires_grad = False
cls_ = copy_temporal_head(feat_)
L_kld = self.kld_loss(cls_, cls.detach())
else:
_, _, mask = self.prepare_patch(loc, x, self.backbone.pos_embed)
L_tch = torch.zeros_like(L_cls)
L_mse = torch.zeros_like(L_cls)
L_kld = torch.zeros_like(L_cls)
return cls.permute(1,0,2), L_cls, L_tch, L_mse, L_kld, mask
def kld_loss(self, student_logits, teacher_logits):
loss = (F.softmax(student_logits, dim=-1)*(F.log_softmax(student_logits, dim=-1) - torch.log_softmax(teacher_logits.detach(), dim=-1))).sum(-1).mean()
return loss
def forward_student(self, x, label_1hot):
B, T = x.size(0), x.size(1)
if (self.training):
with torch.no_grad():
self.teacher.eval()
teacher_feat = self.teacher.backbone(x, self.teacher.backbone.pos_embed[None,...].repeat(B,T,1,1))
teacher_cls = self.teacher.temporal_head(teacher_feat)
# label
label_1hot = label_1hot.byte().argmax(-1).long()
label_1hot = label_1hot.reshape(B)
L_cls, L_tch, L_mse, L_kld = torch.zeros(1).mean().to(x.device), torch.zeros(1).mean().to(x.device), torch.zeros(1).mean().to(x.device), torch.zeros(1).mean().to(x.device)
all_masks = []
all_feat = []
all_cls = []
loc = self.temploc_head.init_loc.repeat(B,1,1)
for t in range(T):
patches, pos, mask = self.prepare_patch(loc, x[:,t:t+1], self.backbone.pos_embed)
feat = self.backbone(patches, pos)
all_feat.append(feat)
loc = self.temploc_head(torch.cat(all_feat, 1).detach())
cls = self.temporal_head(torch.cat(all_feat, 1))
loc = loc[:,-1:,:]
all_cls.append(cls[:,-1:,:])
all_masks.append(mask)
all_masks = torch.cat(all_masks,1)
all_feat = torch.cat(all_feat, 1)
all_cls = torch.cat(all_cls, 1)
L_cls = self.criterion(all_cls.reshape(B*T,-1), label_1hot[:,None].repeat(1,T).reshape(B*T)).mean()
if (self.training):
L_mse = F.mse_loss(all_feat, teacher_feat.detach())
L_kld = self.kld_loss(all_cls, teacher_cls.detach())
else:
L_mse = torch.zeros_like(L_cls)
L_kld = torch.zeros_like(L_cls)
return all_cls.permute(1,0,2), L_cls, L_tch, L_mse, L_kld, all_masks
def prepare_patch(self, loc, x, pos_embed):
# remaining glimpses are sampled
B, T, C, H, W = x.size()
D = pos_embed.size(-1)
scale = self.num_patches_in_glimpse/14
loc = loc.reshape(B*T, -1)
shift = loc
theta = torch.zeros(B*T, 2, 3).to(loc.device)
theta[:,0,0] = scale
theta[:,1,1] = scale
theta[:,:,2] = shift
grid_x = F.affine_grid(theta, (B*T, C, self.num_patches_in_glimpse*16, self.num_patches_in_glimpse*16), align_corners=True)
patch = F.grid_sample(x.flatten(0,1), grid_x, align_corners=True)
patch = patch.reshape(B, T, C, self.num_patches_in_glimpse*16, self.num_patches_in_glimpse*16)
grid_p = F.affine_grid(theta, (B*T, D, self.num_patches_in_glimpse, self.num_patches_in_glimpse), align_corners=True)
pos_embed = pos_embed.permute(0,2,1).reshape(1,D,14,14).repeat(B*T,1,1,1)
pos_embed = F.grid_sample(pos_embed, grid_p, align_corners=True)
pos_embed = pos_embed.reshape(B, T, D, self.num_patches_in_glimpse**2).permute(0, 1, 3, 2)
with torch.no_grad():
mask = torch.ones(B*T,1,self.num_patches_in_glimpse*16, self.num_patches_in_glimpse*16).to(x.device)
theta = torch.zeros(B*T, 2, 3).to(loc.device)
theta[:,0,0] = 1
theta[:,1,1] = 1
theta[:,:,2] = -shift
theta = theta / scale
theta = theta.detach()
grid_m = F.affine_grid(theta, (B*T, 1, 224, 224), align_corners=True)
mask = F.grid_sample(mask, grid_m, align_corners=True)
mask = mask.reshape(B, T, 224, 224)
return patch, pos_embed, mask