The basic training of our model uses LVIS (which uses COCO images) and ImageNet-21K.
Some models are trained on Conceptual Caption (CC3M).
Optionally, we use Objects365 and OpenImages (Challenge 2019 version) for cross-dataset evaluation.
Before starting processing, please download the (selected) datasets from the official websites and place or sim-link them under $Detic_ROOT/datasets/
.
$Detic_ROOT/datasets/
metadata/
lvis/
coco/
imagenet/
cc3m/
objects365/
oid/
metadata/
is our preprocessed meta-data (included in the repo). See the below section for details.
Please follow the following instruction to pre-process individual datasets.
First, download COCO and LVIS data place them in the following way:
lvis/
lvis_v1_train.json
lvis_v1_val.json
coco/
train2017/
val2017/
annotations/
captions_train2017.json
instances_train2017.json
instances_val2017.json
Next, prepare the open-vocabulary LVIS training set using
python tools/remove_lvis_rare.py --ann datasets/lvis/lvis_v1_train.json
This will generate datasets/lvis/lvis_v1_train_norare.json
.
The ImageNet-21K folder should look like:
imagenet/
ImageNet-21K/
n01593028.tar
n01593282.tar
...
We first unzip the overlapping classes of LVIS (we will directly work with the .tar file for the rest classes) and convert them into LVIS annotation format.
mkdir imagenet/annotations
python tools/unzip_imagenet_lvis.py --dst_path datasets/imagenet/ImageNet-LVIS
python tools/create_imagenetlvis_json.py --imagenet_path datasets/imagenet/ImageNet-LVIS --out_path datasets/imagenet/annotations/imagenet_lvis_image_info.json
This creates datasets/imagenet/annotations/imagenet_lvis_image_info.json
.
[Optional] To train with all the 21K classes, run
python tools/get_imagenet_21k_full_tar_json.py
python tools/create_lvis_21k.py
This creates datasets/imagenet/annotations/imagenet-21k_image_info_lvis-21k.json
and datasets/lvis/lvis_v1_train_lvis-21k.json
(combined LVIS and ImageNet-21K classes in categories
).
[Optional] To train on combined LVIS and COCO, run
python tools/merge_lvis_coco.py
This creates datasets/lvis/lvis_v1_train+coco_mask.json
Download the dataset from this page and place them as:
cc3m/
GCC-training.tsv
Run the following command to download the images and convert the annotations to LVIS format (Note: download images takes long).
python tools/download_cc.py --ann datasets/cc3m/GCC-training.tsv --save_image_path datasets/cc3m/training/ --out_path datasets/cc3m/train_image_info.json
python tools/get_cc_tags.py
This creates datasets/cc3m/train_image_info_tags.json
.
Download Objects365 (v2) from the website. We only need the validation set in this project:
objects365/
annotations/
zhiyuan_objv2_val.json
val/
images/
v1/
patch0/
...
patch15/
v2/
patch16/
...
patch49/
The original annotation has typos in the class names, we first fix them for our following use of language embeddings.
python tools/fix_o365_names.py --ann datasets/objects365/annotations/zhiyuan_objv2_val.json
This creates datasets/objects365/zhiyuan_objv2_val_fixname.json
.
To train on Objects365, download the training images and use the command above. We note some images in the training annotation do not exist. We use the following command to filter the missing images.
python tools/fix_0365_path.py
This creates datasets/objects365/zhiyuan_objv2_train_fixname_fixmiss.json
.
We followed the instructions in UniDet to convert the metadata for OpenImages.
The converted folder should look like
oid/
annotations/
oid_challenge_2019_train_bbox.json
oid_challenge_2019_val_expanded.json
images/
0/
1/
2/
...
We first follow OVR-CNN to create the open-vocabulary COCO split. The converted files should be like
coco/
zero-shot/
instances_train2017_seen_2.json
instances_val2017_all_2.json
We further pre-process the annotation format for easier evaluation:
python tools/get_coco_zeroshot_oriorder.py --data_path datasets/coco/zero-shot/instances_train2017_seen_2.json
python tools/get_coco_zeroshot_oriorder.py --data_path datasets/coco/zero-shot/instances_val2017_all_2.json
Next, we preprocess the COCO caption data:
python tools/get_cc_tags.py --cc_ann datasets/coco/annotations/captions_train2017.json --out_path datasets/coco/captions_train2017_tags_allcaps.json --allcaps --convert_caption --cat_path datasets/coco/annotations/instances_val2017.json
This creates datasets/coco/captions_train2017_tags_allcaps.json
.
metadata/
lvis_v1_train_cat_info.json
coco_clip_a+cname.npy
lvis_v1_clip_a+cname.npy
o365_clip_a+cnamefix.npy
oid_clip_a+cname.npy
imagenet_lvis_wnid.txt
Objects365_names_fix.csv
lvis_v1_train_cat_info.json
is used by the Federated loss.
This is created by
python tools/get_lvis_cat_info.py --ann datasets/lvis/lvis_v1_train.json
*_clip_a+cname.npy
is the pre-computed CLIP embeddings for each datasets.
They are created by (taking LVIS as an example)
python tools/dump_clip_features.py --ann datasets/lvis/lvis_v1_val.json --out_path metadata/lvis_v1_clip_a+cname.npy
Note we do not include the 21K class embeddings due to the large file size. To create it, run
python tools/dump_clip_features.py --ann datasets/lvis/lvis_v1_val_lvis-21k.json --out_path datasets/metadata/lvis-21k_clip_a+cname.npy
imagenet_lvis_wnid.txt
is the list of matched classes between ImageNet-21K and LVIS.
Objects365_names_fix.csv
is our manual fix of the Objects365 names.