This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 33
/
main.py
251 lines (200 loc) · 9.29 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import argparse
import os
import apex
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
from src.clustering import get_cluster_assignments, load_cluster_assignments
from src.data.loader import get_data_transformations
from src.data.YFCC100M import YFCC100M_dataset
from src.model.model_factory import (build_prediction_layer, model_factory,
sgd_optimizer, to_cuda)
from src.model.pretrain import load_pretrained
from src.slurm import init_signal_handler
from src.trainer import train_network
from src.utils import (bool_flag, check_parameters, end_of_epoch, fix_random_seeds,
init_distributed_mode, initialize_exp, restart_from_checkpoint)
def get_parser():
"""
Generate a parameters parser.
"""
# parse parameters
parser = argparse.ArgumentParser(description="Unsupervised feature learning.")
# handling experiment parameters
parser.add_argument("--checkpoint_freq", type=int, default=1,
help="Save the model every this epoch.")
parser.add_argument("--dump_path", type=str, default="./exp",
help="Experiment dump path.")
parser.add_argument('--epoch', type=int, default=0,
help='Current epoch to run.')
parser.add_argument('--start_iter', type=int, default=0,
help='First iter to run in the current epoch.')
# network params
parser.add_argument('--pretrained', type=str, default='',
help='Start from this instead of random weights.')
# datasets params
parser.add_argument('--data_path', type=str, default='',
help='Where to find training dataset.')
parser.add_argument('--size_dataset', type=int, default=10000000,
help='How many images to use.')
parser.add_argument('--workers', type=int, default=8,
help='Number of data loading workers.')
parser.add_argument('--sobel', type=bool_flag, default=0,
help='Apply Sobel filter.')
# optim params
parser.add_argument('--lr', type=float, default=0.1, help='Learning rate.')
parser.add_argument('--wd', type=float, default=1e-5, help='Weight decay.')
parser.add_argument('--nepochs', type=int, default=100,
help='Max number of epochs to run.')
parser.add_argument('--batch_size', default=48, type=int,
help='Batch-size per process.')
# Model params
parser.add_argument('--reassignment', type=int, default=3,
help='Reassign clusters every this epoch(s).')
parser.add_argument('--dim_pca', type=int, default=4096,
help='Dimension of the pca applied to the descriptors.')
parser.add_argument('--k', type=int, default=10000,
help='Total number of clusters.')
parser.add_argument('--super_classes', type=int, default=4,
help='Total number of super-classes.')
parser.add_argument('--rotnet', type=bool_flag, default=True,
help='Network needs to classify large rotations.')
# k-means params
parser.add_argument('--warm_restart', type=bool_flag, default=False,
help='Use previous centroids as init.')
parser.add_argument('--use_faiss', type=bool_flag, default=True,
help='Use faiss for E steps in k-means.')
parser.add_argument('--niter', type=int, default=10,
help='Number of k-means iterations.')
# distributed training params
parser.add_argument('--rank', default=0, type=int,
help='Global process rank.')
parser.add_argument("--local_rank", type=int, default=-1,
help="Multi-GPU - Local rank")
parser.add_argument('--world-size', default=1, type=int,
help='Number of distributed processes.')
parser.add_argument('--dist-url', default='', type=str,
help='Url used to set up distributed training.')
# debug
parser.add_argument("--debug_slurm", type=bool_flag, default=False,
help="Debug within a SLURM job.")
return parser.parse_args()
def main(args):
"""
This code implements the paper: https://arxiv.org/abs/1905.01278
The method consists in alternating between a hierachical clustering of the
features and learning the parameters of a convnet by predicting both the
angle of the rotation applied to the input data and the cluster assignments
in a single hierachical loss.
"""
# initialize communication groups
training_groups, clustering_groups = init_distributed_mode(args)
# check parameters
check_parameters(args)
# initialize the experiment
logger, training_stats = initialize_exp(args, 'epoch', 'iter', 'prec', 'loss',
'prec_super_class', 'loss_super_class',
'prec_sub_class', 'loss_sub_class')
# initialize SLURM signal handler for time limit / pre-emption
init_signal_handler()
# load data
dataset = YFCC100M_dataset(args.data_path, size=args.size_dataset)
# prepare the different data transformations
tr_cluster, tr_train = get_data_transformations(args.rotation * 90)
# build model skeleton
fix_random_seeds()
model = model_factory(args.sobel)
logger.info('model created')
# load pretrained weights
load_pretrained(model, args)
# convert batch-norm layers to nvidia wrapper to enable batch stats reduction
model = apex.parallel.convert_syncbn_model(model)
# distributed training wrapper
model = to_cuda(model, args.gpu_to_work_on, apex=True)
logger.info('model to cuda')
# set optimizer
optimizer = sgd_optimizer(model, args.lr, args.wd)
# load cluster assignments
cluster_assignments = load_cluster_assignments(args, dataset)
# build prediction layer on the super_class
pred_layer, optimizer_pred_layer = build_prediction_layer(
model.module.body.dim_output_space,
args,
)
nmb_sub_classes = args.k // args.nmb_super_clusters
sub_class_pred_layer, optimizer_sub_class_pred_layer = build_prediction_layer(
model.module.body.dim_output_space,
args,
num_classes=nmb_sub_classes,
group=training_groups[args.training_local_world_id],
)
# variables to fetch in checkpoint
to_restore = {'epoch': 0, 'start_iter': 0}
# re start from checkpoint
restart_from_checkpoint(
args,
run_variables=to_restore,
state_dict=model,
optimizer=optimizer,
pred_layer_state_dict=pred_layer,
optimizer_pred_layer=optimizer_pred_layer,
)
pred_layer_name = str(args.training_local_world_id) + '-pred_layer.pth.tar'
restart_from_checkpoint(
args,
ckp_path=os.path.join(args.dump_path, pred_layer_name),
state_dict=sub_class_pred_layer,
optimizer=optimizer_sub_class_pred_layer,
)
args.epoch = to_restore['epoch']
args.start_iter = to_restore['start_iter']
for _ in range(args.epoch, args.nepochs):
logger.info("============ Starting epoch %i ... ============" % args.epoch)
fix_random_seeds(args.epoch)
# step 1: Get the final activations for the whole dataset / Cluster them
if cluster_assignments is None and not args.epoch % args.reassignment:
logger.info("=> Start clustering step")
dataset.transform = tr_cluster
cluster_assignments = get_cluster_assignments(args, model, dataset, clustering_groups)
# reset prediction layers
if args.nmb_super_clusters > 1:
pred_layer, optimizer_pred_layer = build_prediction_layer(
model.module.body.dim_output_space,
args,
)
sub_class_pred_layer, optimizer_sub_class_pred_layer = build_prediction_layer(
model.module.body.dim_output_space,
args,
num_classes=nmb_sub_classes,
group=training_groups[args.training_local_world_id],
)
# step 2: Train the network with the cluster assignments as labels
# prepare dataset
dataset.transform = tr_train
dataset.sub_classes = cluster_assignments
# concatenate models and their corresponding optimizers
models = [model, pred_layer, sub_class_pred_layer]
optimizers = [optimizer, optimizer_pred_layer, optimizer_sub_class_pred_layer]
# train the network for one epoch
scores = train_network(args, models, optimizers, dataset)
## save training statistics
logger.info(scores)
training_stats.update(scores)
# reassign clusters at the next epoch
if not args.epoch % args.reassignment:
cluster_assignments = None
dataset.subset_indexes = None
end_of_epoch(args)
dist.barrier()
if __name__ == '__main__':
# generate parser / parse parameters
args = get_parser()
# run experiment
main(args)