-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbenchmark_utils.py
154 lines (123 loc) · 4.53 KB
/
benchmark_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# Copyright (c) Meta Platforms, Inc. and affiliates.
# pyre-strict
import argparse
import concurrent.futures
import os
import random
import sys
import threading
import time
import traceback
from collections.abc import Callable, Sequence
from typing import List, Type, TypeVar
from ft_utils.local import BatchExecutor
_BATCH_RAND = BatchExecutor(lambda: random.getrandbits(32), 1024)
# Use these for random manipulations as they are much more performant
# in FTPython under contention thant the random.* alternatives.
def ft_randint(a: int, b: int) -> int:
if a > b:
a, b = b, a
range_size = b - a + 1
range_bits = range_size.bit_length()
accumulated_random = 0
bits_collected = 0
while bits_collected < range_bits:
accumulated_random = (accumulated_random << 32) | _BATCH_RAND.load()
bits_collected += 32
result = accumulated_random % range_size
return a + result
T = TypeVar("T")
def ft_randchoice(seq: Sequence[T]) -> T:
if not seq:
raise IndexError("Cannot choose from an empty sequence")
return seq[ft_randint(0, len(seq) - 1)]
class BenchmarkProvider:
"""
Base class for benchmark providers.
"""
def __init__(self, operations: int) -> None:
self._operations = operations
def parse_arguments(description: str) -> argparse.Namespace:
"""
Parses command-line arguments common to benchmarking scripts.
"""
parser = argparse.ArgumentParser(description=description)
parser.add_argument(
"--operations", type=int, default=1000, help="Number of operations to perform."
)
parser.add_argument(
"--threads", type=int, default=16, help="Number of threads to use."
)
parser.add_argument(
"--switch_interval",
type=float,
default=0.001,
help="GIL (if used) switch interval in seconds.",
)
return parser.parse_args()
def benchmark_operation(operation_func: Callable[[], None]) -> float:
"""
Measures the time taken to perform a specified operation.
"""
start_time = time.time()
operation_func()
end_time = time.time()
return end_time - start_time
def worker(
operation_func: Callable[[], None],
barrier: threading.Barrier,
) -> list[float]:
"""
Executes the benchmark multiple times and collects run times.
"""
barrier.wait() # Synchronize the start of operations
run_times: list[float] = [benchmark_operation(operation_func) for _ in range(5)]
return run_times
def execute_benchmarks(
provider_class: type[BenchmarkProvider],
) -> None:
"""
Sets up and executes benchmarks across multiple threads using methods from a BenchmarkProvider.
"""
args = parse_arguments("list parallel benchmark.")
num_operations: int = args.operations
num_threads: int = args.threads
sys.setswitchinterval(args.switch_interval)
cmdl_banner = "Command line:" + " ".join(sys.argv)
print("*" * len(cmdl_banner))
print("Benchmark for multi-threaded operation")
print(cmdl_banner)
print("*" * len(cmdl_banner))
provider_instance = provider_class(num_operations)
operation_methods = [
(method_name[10:], getattr(provider_instance, method_name))
for method_name in dir(provider_instance)
if callable(getattr(provider_instance, method_name))
and method_name.startswith("benchmark_")
]
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
for operation_name, operation_func in operation_methods:
if hasattr(provider_instance, "set_up"):
provider_instance.set_up() # pyre-ignore[16]
barrier = threading.Barrier(num_threads)
futures = [
executor.submit(worker, operation_func, barrier)
for _ in range(num_threads)
]
run_times = []
for future in concurrent.futures.as_completed(futures):
try:
run_times.extend(future.result())
except IndexError as e:
print("Exception in benchmark - exiting hard")
print(e)
stack_trace = traceback.format_exc()
print(stack_trace)
os._exit(-1)
if run_times:
min_time = min(run_times)
max_time = max(run_times)
mean_time = sum(run_times) / len(run_times)
print(
f" {operation_name:<32} Max: {max_time:.6f} Mean: {mean_time:.6f} Min: {min_time:.6f}"
)