forked from mateuszbuda/brain-segmentation-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
136 lines (108 loc) · 4.49 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import random
import numpy as np
import torch
from skimage.io import imread
from torch.utils.data import Dataset
from utils import crop_sample, pad_sample, resize_sample, normalize_volume
class BrainSegmentationDataset(Dataset):
"""Brain MRI dataset for FLAIR abnormality segmentation"""
in_channels = 3
out_channels = 1
def __init__(
self,
images_dir,
transform=None,
image_size=256,
subset="train",
random_sampling=True,
validation_cases=10,
seed=42,
):
assert subset in ["all", "train", "validation"]
# read images
volumes = {}
masks = {}
print("reading {} images...".format(subset))
for (dirpath, dirnames, filenames) in os.walk(images_dir):
image_slices = []
mask_slices = []
for filename in sorted(
filter(lambda f: ".tif" in f, filenames),
key=lambda x: int(x.split(".")[-2].split("_")[4]),
):
filepath = os.path.join(dirpath, filename)
if "mask" in filename:
mask_slices.append(imread(filepath, as_gray=True))
else:
image_slices.append(imread(filepath))
if len(image_slices) > 0:
patient_id = dirpath.split("/")[-1]
volumes[patient_id] = np.array(image_slices[1:-1])
masks[patient_id] = np.array(mask_slices[1:-1])
self.patients = sorted(volumes)
# select cases to subset
if not subset == "all":
random.seed(seed)
validation_patients = random.sample(self.patients, k=validation_cases)
if subset == "validation":
self.patients = validation_patients
else:
self.patients = sorted(
list(set(self.patients).difference(validation_patients))
)
print("preprocessing {} volumes...".format(subset))
# create list of tuples (volume, mask)
self.volumes = [(volumes[k], masks[k]) for k in self.patients]
print("cropping {} volumes...".format(subset))
# crop to smallest enclosing volume
self.volumes = [crop_sample(v) for v in self.volumes]
print("padding {} volumes...".format(subset))
# pad to square
self.volumes = [pad_sample(v) for v in self.volumes]
print("resizing {} volumes...".format(subset))
# resize
self.volumes = [resize_sample(v, size=image_size) for v in self.volumes]
print("normalizing {} volumes...".format(subset))
# normalize channel-wise
self.volumes = [(normalize_volume(v), m) for v, m in self.volumes]
# probabilities for sampling slices based on masks
self.slice_weights = [m.sum(axis=-1).sum(axis=-1) for v, m in self.volumes]
self.slice_weights = [
(s + (s.sum() * 0.1 / len(s))) / (s.sum() * 1.1) for s in self.slice_weights
]
# add channel dimension to masks
self.volumes = [(v, m[..., np.newaxis]) for (v, m) in self.volumes]
print("done creating {} dataset".format(subset))
# create global index for patient and slice (idx -> (p_idx, s_idx))
num_slices = [v.shape[0] for v, m in self.volumes]
self.patient_slice_index = list(
zip(
sum([[i] * num_slices[i] for i in range(len(num_slices))], []),
sum([list(range(x)) for x in num_slices], []),
)
)
self.random_sampling = random_sampling
self.transform = transform
def __len__(self):
return len(self.patient_slice_index)
def __getitem__(self, idx):
patient = self.patient_slice_index[idx][0]
slice_n = self.patient_slice_index[idx][1]
if self.random_sampling:
patient = np.random.randint(len(self.volumes))
slice_n = np.random.choice(
range(self.volumes[patient][0].shape[0]), p=self.slice_weights[patient]
)
v, m = self.volumes[patient]
image = v[slice_n]
mask = m[slice_n]
if self.transform is not None:
image, mask = self.transform((image, mask))
# fix dimensions (C, H, W)
image = image.transpose(2, 0, 1)
mask = mask.transpose(2, 0, 1)
image_tensor = torch.from_numpy(image.astype(np.float32))
mask_tensor = torch.from_numpy(mask.astype(np.float32))
# return tensors
return image_tensor, mask_tensor