From eadccded9d407148c6a96c4ba3a6adf173280ccc Mon Sep 17 00:00:00 2001 From: Alexis Montoison Date: Wed, 1 May 2024 11:59:09 -0400 Subject: [PATCH] Add the definition of e in ipm.tex --- tex/sections/ipm.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/tex/sections/ipm.tex b/tex/sections/ipm.tex index dc6478e..671adfa 100644 --- a/tex/sections/ipm.tex +++ b/tex/sections/ipm.tex @@ -109,8 +109,8 @@ \subsection{Solving the KKT conditions with the interior-point method} \end{bmatrix} = 0 \; . \end{equation} -We introduce in \eqref{eq:kkt_ipm} the diagonal matrices $X = \diag(x_1, \cdots, x_n)$ -and $S = \diag(s_1, \cdots, s_{m_i})$. +We introduce the diagonal matrices $X = \text{diag}(x_1, \cdots, x_n)$ and +$S = \text{diag}(s_1, \cdots, s_{m_i})$, along with the vector of ones $e$. As we drive the barrier parameter $\mu$ to $0$, the solution of the system $F_\mu(x, s, y, z, u, v) = 0$ tends to the solution of the KKT conditions~\eqref{eq:kktconditions}.