diff --git a/xl2times/config/veda-tags.json b/xl2times/config/veda-tags.json index 1f60652..09903ba 100644 --- a/xl2times/config/veda-tags.json +++ b/xl2times/config/veda-tags.json @@ -782,7 +782,7 @@ { "name": "name", "aliases": [], - "use_name": "name", + "use_name": "commoditygroup", "row_ignore_symbol": [ "\\I:", "*" diff --git a/xl2times/transforms.py b/xl2times/transforms.py index 71eb8a5..e27b726 100644 --- a/xl2times/transforms.py +++ b/xl2times/transforms.py @@ -2017,7 +2017,7 @@ def get_matching_processes(row, dictionary): ("pset_ci", "processes_by_comm_in"), ("pset_co", "processes_by_comm_out"), ]: - if row[col] is not None: + if col in row.index and row[col] is not None: matching_processes = intersect( matching_processes, filter_by_pattern(dictionary[key], row[col].upper()) ) @@ -2033,7 +2033,7 @@ def get_matching_commodities(row, dictionary): ("cset_cd", "commodities_by_desc"), ("cset_set", "commodities_by_sets"), ]: - if row[col] is not None: + if col in row.index and row[col] is not None: matching_commodities = intersect( matching_commodities, filter_by_pattern(dictionary[key], row[col].upper()), @@ -2155,13 +2155,21 @@ def process_wildcards( tables: Dict[str, DataFrame], model: datatypes.TimesModel, ) -> Dict[str, DataFrame]: + """ + Process wildcards specified int TFM tables. + """ + topology = generate_topology_dictionary(tables, model) def match_wildcards( row: pd.Series, ) -> tuple[DataFrame | None, DataFrame | None] | None: + """ + Return matching processes and commodities + """ matching_processes = get_matching_processes(row, topology) matching_commodities = get_matching_commodities(row, topology) + if (matching_processes is None or len(matching_processes) == 0) and ( matching_commodities is None or len(matching_commodities) == 0 ): # TODO is this necessary? Try without? @@ -2298,6 +2306,33 @@ def eval_and_update( new_tables.append(tables[datatypes.Tag.fi_t]) tables[datatypes.Tag.fi_t] = pd.concat(new_tables, ignore_index=True) + if datatypes.Tag.tfm_comgrp in tables: + updates = tables[datatypes.Tag.tfm_comgrp] + table = model.commodity_groups + new_tables = [] + + # Expand each row by wildcards, then add to model.commodity_groups + for _, row in updates.iterrows(): + match = match_wildcards(row) + # Convert serie to dataframe; keep only relevant columns + new_rows = pd.DataFrame([row.filter(table.columns)]) + # Match returns both processes and commodities, but only latter is relevant here + processes, commodities = match if match is not None else (None, None) + if commodities is None: + logger.warning(f"TFM_COMGRP row did not match any commodity") + else: + new_rows = commodities.merge(new_rows, how="cross") + new_tables.append(new_rows) + + # Expand model.commodity_groups with user-defined commodity groups + if new_tables: + new_tables.append(model.commodity_groups) + commodity_groups = pd.concat( + new_tables, ignore_index=True + ).drop_duplicates() + commodity_groups.loc[commodity_groups["gmap"].isna(), ["gmap"]] = True + model.commodity_groups = commodity_groups.dropna() + return tables