You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
After successfully reproducing the result of CIFAR10 ConvSmall network in Table 2, I tried to use the same config parameter for a modified CIFAR10 ConvSmall network (adding maxpool layer as follows).
However, the result of PRIMA is equal to DeepPoly in this setting. I am wondering which parameter should I alter if I have maxpool layer in my neural network?
Hi,
After successfully reproducing the result of CIFAR10 ConvSmall network in Table 2, I tried to use the same config parameter for a modified CIFAR10 ConvSmall network (adding maxpool layer as follows).
However, the result of PRIMA is equal to DeepPoly in this setting. I am wondering which parameter should I alter if I have maxpool layer in my neural network?
Command for PRIMA: (Same as config in table 2, except for the netname, num_test, mean, and std)
python3 . --approx_k True --dataset cifar10 --domain refinepoly --epsilon 0.0000 --from_test 0 --k 3 --max_milp_neurons 100 --n_milp_refine 1 --netname ../net/convSmall_normal_cifar10.onnx --num_tests 100 --partial_milp 2 --s -2 --sparse_n 100 --timeout_final_lp 20.0 --timeout_final_milp 200.0 --timeout_lp 1 --timeout_milp 1 --mean 0.485 0.456 0.406 --std 0.229 0.224 0.225
Command for DeepPoly
python3 . --netname ../net/convBig_normal_cifar10.onnx --dataset cifar10 --domain deeppoly --epsilon 0.0000 --num_test 100 --mean 0.485 0.456 0.406 --std 0.229 0.224 0.225
The text was updated successfully, but these errors were encountered: