Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

PRIMA does not outperform DeepPoly when adding maxpool layer #113

Open
Gting6 opened this issue May 18, 2022 · 0 comments
Open

PRIMA does not outperform DeepPoly when adding maxpool layer #113

Gting6 opened this issue May 18, 2022 · 0 comments

Comments

@Gting6
Copy link

Gting6 commented May 18, 2022

Hi,

After successfully reproducing the result of CIFAR10 ConvSmall network in Table 2, I tried to use the same config parameter for a modified CIFAR10 ConvSmall network (adding maxpool layer as follows).

image

However, the result of PRIMA is equal to DeepPoly in this setting. I am wondering which parameter should I alter if I have maxpool layer in my neural network?

image

Command for PRIMA: (Same as config in table 2, except for the netname, num_test, mean, and std)
python3 . --approx_k True --dataset cifar10 --domain refinepoly --epsilon 0.0000 --from_test 0 --k 3 --max_milp_neurons 100 --n_milp_refine 1 --netname ../net/convSmall_normal_cifar10.onnx --num_tests 100 --partial_milp 2 --s -2 --sparse_n 100 --timeout_final_lp 20.0 --timeout_final_milp 200.0 --timeout_lp 1 --timeout_milp 1 --mean 0.485 0.456 0.406 --std 0.229 0.224 0.225
Command for DeepPoly
python3 . --netname ../net/convBig_normal_cifar10.onnx --dataset cifar10 --domain deeppoly --epsilon 0.0000 --num_test 100 --mean 0.485 0.456 0.406 --std 0.229 0.224 0.225

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant