forked from klapo/CalRad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
matlab_eof_example.m
203 lines (170 loc) · 5.18 KB
/
matlab_eof_example.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
% PURPOSE:
% This script looks for explained variance in simulated melt using a EOF rotation scheme.
%% Prepare simulated data
clear all
close all
clc
homedir = '/Users/karllapo/Dropbox/';
workdir = 'C:\Users\Karl\Dropbox\';
atmosdir = '/home/disk/p/lapok/ATMOS/';
if isunix
curdir = atmosdir;
BECKdir = 'MetData/SenatorBeck/';
LOSdir = 'MetData/PNW_SNOTEL/';
YOSdir = 'MetData/Yosemite/';
CSLdir = 'MetData/CSL/';
RMEdir = 'MetData/Reynolds/WY2009/';
MODISdir = 'RadiationData/MODIS.SW/';
CERESdir = 'RadiationData/CERES.SYN/';
MODdir = 'SnowHydrology/SW_Intercomparison/';
PRINTdir = 'SnowHydrology/SW_Intercomparison/Graphics';
if ismac
curdir = homedir;
end
elseif ispc
curdir = workdir;
BECKdir = 'MetData\SenatorBeck\';
LOSdir = 'MetData\PNW_SNOTEL\';
YOSdir = 'MetData\Yosemite\';
CSLdir = 'MetData\CSL\';
RMEdir = 'MetData\Reynolds\WY2009\';
MODISdir = 'RadiationData\MODIS.SW\';
CERESdir = 'RadiationData\CERES.SYN\';
MODdir = 'SnowHydrology\SW_Intercomparison\';
PRINTdir = 'SnowHydrology\SW_Intercomparison\Graphics';
end
% Get MET data
cd([curdir,MODdir])
load 3hrAggMET.mat
% Get UEB model output
cd UEB_Results
s = dir;
for n = 1:length(s)
if strcmp(s(n).name(1),'.')
continue
end
nind = strfind(s(n).name,'.');
site = s(n).name(1:nind(1)-1);
SWtype = s(n).name(nind(1)+1:nind(2)-1);
UEBMOD.(site).(SWtype) = load(s(n).name);
end
s = fieldnames(UEBMOD);
%%%%%%%%%%%%%%%%%%
%% SNOW METRICS %%
%%%%%%%%%%%%%%%%%%
for n = 1:length(s)
% UEB
[UEBMOD.(s{n}).ObsSW.n_MAX,UEBMOD.(s{n}).ObsSW.MAXSWE,UEBMOD.(s{n}).ObsSW.t_MAX,...
UEBMOD.(s{n}).ObsSW.SDD,UEBMOD.(s{n}).ObsSW.t_SDD,UEBMOD.(s{n}).ObsSW.AvgMelt,...
UEBMOD.(s{n}).ObsSW.MELT,UEBMOD.(s{n}).ObsSW.ACC] = SnowMetrics(MET.(s{n}).t,UEBMOD.(s{n}).ObsSW.statev(:,2));
end
%% EOF analysis
%for n = 1:length(s)
% Limit focus right now to just one site
% Grab the hourly data
cd([curdir,BECKdir])
load SWA.mat
% Check out other sites and times
cd([curdir,RMEdir])
load RMEWY2009.mat
% Variables to correlate with melt:
% Other ideas: solar zenith angle, time since last snow fall
% remove mean and standard deviation from each factor considered - variance of 1
CF = interp1(SWA.t(:,7),SWA.CF_Ratio,MET.SWA.t(:,7)); % Interpolate ratio derived cloud fraction to the model timestep
CF = RemoveVariance(CF);
T = RemoveVariance(MET.SWA.T);
RH = RemoveVariance(MET.SWA.RH);
WIND = RemoveVariance(MET.SWA.WIND);
SWdwn = RemoveVariance(MET.SWA.SWdwn);
LW_Emp = RemoveVariance(MET.SWA.LW_Emp);
% use days with melt.
md = find(UEBMOD.SWA.ObsSW.MELT ~= 0);
% MELT = UEBMOD.SWA.ObsSW.MELT;
MELT = -RemoveVariance(UEBMOD.SWA.ObsSW.MELT(md)); % Divide by mean so that zero values are unaffected
t = MET.SWA.t(:,7);
%%%%%%%%%
%% MCA %%
%%%%%%%%%
% Not so useful? My covariance matrix is 7x1 - only one siginficant
% eigenvalue.
xm = [CF(md), T(md), RH(md), WIND(md), SWdwn(md), LW_Emp(md)];
[rmsq,cx,sx,cy,sy,xy,ux_cov,uy_cov,s_cov] = MaxCovAnalysis(xm,MELT);
% Heterogeneous mapping
xt = MELT*ux_cov(:,1)';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% EOF/PC and Rotated EOFs %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Make into one big data matrix
N = length(MELT);
M = 7;
xm = [MELT,xm];
[C,ralph,E,EM,L,D,Z,ZM] = EOF_PC_ANALYSIS(xm');
ind = M+1-[1:M];
% Plot Eigenvalues
figure
errorbar(ind,D,L)
set(get(1,'CurrentAxes'),'FontSize',14)
xlabel('Index','Fontsize',14)
ylabel('Eigenvalue','Fontsize',14)
% Plot EOFs
figure
plot(E(:,M-2),'g-.')
hold on
plot(E(:,M-1),'b--')
plot(E(:,M),'r')
set(gca,'XTick',1:8,'XTickLabel',{'Melt','CF','T','RH','WIND','SW','LW','Precip'})
legend('3','2','1','Location','EastOutside')
axis tight
grid on
%% Plot PCs
% Look at the melt season (May -> June)
tind = find(datenum(2009,5,15,0,0,0) == t):find(datenum(2009,6,7,0,0,0) == t);
% Convert from melt only to all time steps
PCs = NaN(7,length(t));
PCs(:,md) = Z(:,:);
figure
subaxis(4,1,1,'P',0,'MT',.06,'ML',.12,'sv',.06,'mr',0)
hold on
plot(t(tind),PCs(M-1,tind),'b--')
plot(t(tind),PCs(M,tind),'r')
legend('2','1','Location','East')
axis tight
grid on
datetick('x','keeplimits')
ylabel('PC Amplitude')
subaxis(2) %%% EOF 2
plot(t(tind),CF(tind))
hold all
plot(t(tind),RH(tind))
plot(t(tind),LW_Emp(tind))
legend('CF','RH','LW','Location','East')
axis tight
grid on
datetick('x','keeplimits')
ylabel('Standardized')
subaxis(3) %%% EOF 1
plot(t(tind),T(tind))
hold all
plot(t(tind),SWdwn(tind))
legend('T','SW','Location','East')
axis tight
grid on
datetick('x','keeplimits')
ylabel('Standardized')
subaxis(4) %%% MELT
plot(t(tind),-UEBMOD.SWA.ObsSW.MELT(tind))
axis tight
grid on
datetick('x','keeplimits')
ylabel('Simulated Melt (mm)')
% OK, let's try rotating these eigenvectors
% Determines number of EOFs to rotate
ii=2; % Only rotate the significant ones from above
lambda=E(:,M-ii+1:M);
[ER, V] = varimax(lambda,1.,1.0e-6); % Check and see if this is an oblique or orthogonal rotation
%**************************************************
figure
plot(ER(:,end),'y','LineWidth',2)
hold on
plot(ER(:,end-1),'g-.','LineWidth',2)
set(gca,'XTick',1:8,'XTickLabel',{'Melt','CF','T','RH','WIND','SW','LW','Precip'})