forked from chaor11/twoqubitec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathec513twoqubit.py
272 lines (258 loc) · 8.66 KB
/
ec513twoqubit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Implement the fault-tolerant error correction of [[5,1,3]] code using only two ancilla qubit.
from utility import *
# Perform weight-1 Pauli correction according to the syndromes of four stabilizers.
def correctErrorsUsingSyndromes(errors, syndromes):
if syndromes == [0,0,0,0]:
pass
elif syndromes == [0,0,0,1]:
errors.x ^= 1<<0
elif syndromes == [1,0,1,1]:
errors.x ^= 1<<0
errors.z ^= 1<<0
elif syndromes == [1,0,1,0]:
errors.z ^= 1<<0
elif syndromes == [1,0,0,0]:
errors.x ^= 1<<1
elif syndromes == [1,1,0,1]:
errors.x ^= 1<<1
errors.z ^= 1<<1
elif syndromes == [0,1,0,1]:
errors.z ^= 1<<1
elif syndromes == [1,1,0,0]:
errors.x ^= 1<<2
elif syndromes == [1,1,1,0]:
errors.x ^= 1<<2
errors.z ^= 1<<2
elif syndromes == [0,0,1,0]:
errors.z ^= 1<<2
elif syndromes == [0,1,1,0]:
errors.x ^= 1<<3
elif syndromes == [1,1,1,1]:
errors.x ^= 1<<3
errors.z ^= 1<<3
elif syndromes == [1,0,0,1]:
errors.z ^= 1<<3
elif syndromes == [0,0,1,1]:
errors.x ^= 1<<4
elif syndromes == [0,1,1,1]:
errors.x ^= 1<<4
errors.z ^= 1<<4
elif syndromes == [0,1,0,0]:
errors.z ^= 1<<4
# Extract the syndromes of four stabilizers using one qubit a time.
def extractSyndromes(errors, errorRates):
syndromes = [0 for i in range(4)]
for j in range(4):
prepZ(5, errors, errorRates)
dualcz(j%5, 5, errors, errorRates)
cnot((j+1)%5, 5, errors, errorRates)
cnot((j+2)%5, 5, errors, errorRates)
dualcz((j+3)%5, 5, errors, errorRates)
syndromes[j] = measZ(5, errors, errorRates)
return syndromes
# Implement the error correction procedure in Section II in the paper. For example, the circuit for measurement of XZZXI follows FIG.2 (c).
def correctErrors(errors, errorRates, verbose=False):
if verbose: print "starting syndrome0"
prepZ(5, errors, errorRates)
prepX(6, errors, errorRates)
dualcz(0, 5, errors, errorRates)
cnot(6, 5, errors, errorRates)
cnot(1, 5, errors, errorRates)
cnot(2, 5, errors, errorRates)
cnot(6, 5, errors, errorRates)
dualcz(3, 5, errors, errorRates)
syndrome0 = measZ(5, errors, errorRates)
flag0 = measX(6, errors, errorRates)
if flag0:
if verbose: print "flag0"
syndromes = extractSyndromes(errors, errorRates)
if verbose: print syndromes
if syndromes == [0,0,0,1]:
errors.x ^= 1<<0
elif syndromes == [0,1,0,0]:
errors.x ^= 1<<3
errors.z ^= 1<<2
elif syndromes == [0,1,1,0]:
errors.x ^= 1<<3
elif syndromes == [1,0,0,0]:
errors.x ^= (1<<2) ^ (1<<3)
errors.z ^= 1<<2
elif syndromes == [1,0,0,1]:
errors.x ^= (1<<0) ^ (1<<1)
elif syndromes == [1,0,1,0]:
errors.x ^= (1<<2) ^ (1<<3)
elif syndromes == [1,1,0,0]:
errors.x ^= (1<<3) + (1<<4)
errors.z ^= 1<<3
return 1
elif syndrome0:
if verbose: print "syndrome0"
syndromes = extractSyndromes(errors, errorRates)
if verbose: print syndromes
correctErrorsUsingSyndromes(errors, syndromes)
return 1
if verbose: print "starting syndrome1"
prepZ(5, errors, errorRates)
prepX(6, errors, errorRates)
dualcz(1, 5, errors, errorRates)
cnot(6, 5, errors, errorRates)
cnot(2, 5, errors, errorRates)
cnot(3, 5, errors, errorRates)
cnot(6, 5, errors, errorRates)
dualcz(4, 5, errors, errorRates)
syndrome1 = measZ(5, errors, errorRates)
flag1 = measX(6, errors, errorRates)
if flag1:
if verbose: print "flag1"
syndromes = extractSyndromes(errors, errorRates)
if verbose: print syndromes
if syndromes == [0,0,1,1]:
errors.x ^= 1<<4
elif syndromes == [0,1,0,0]:
errors.x ^= (1<<1) ^ (1<<2)
elif syndromes == [0,1,0,1]:
errors.x ^= (1<<3) ^ (1<<4)
elif syndromes == [0,1,1,0]:
errors.x ^= (1<<0) ^ (1<<4)
errors.z ^= 1<<4
elif syndromes == [1,0,0,0]:
errors.x ^= 1<<1
elif syndromes == [1,0,1,0]:
errors.x ^= 1<<4
errors.z ^= 1<<3
elif syndromes == [1,1,0,0]:
errors.x ^= (1<<3) + (1<<4)
errors.z ^= 1<<3
return 1
elif syndrome1:
if verbose: print "syndrome1"
syndromes = extractSyndromes(errors, errorRates)
if verbose: print syndromes
correctErrorsUsingSyndromes(errors, syndromes)
return 1
if verbose: print "starting syndrome2"
prepZ(5, errors, errorRates)
prepX(6, errors, errorRates)
dualcz(2, 5, errors, errorRates)
cnot(6, 5, errors, errorRates)
cnot(3, 5, errors, errorRates)
cnot(4, 5, errors, errorRates)
cnot(6, 5, errors, errorRates)
dualcz(0, 5, errors, errorRates)
syndrome2 = measZ(5, errors, errorRates)
flag2 = measX(6, errors, errorRates)
if flag2:
if verbose: print "flag2"
syndromes = extractSyndromes(errors, errorRates)
if verbose: print syndromes
if syndromes == [0,0,0,1]:
errors.x ^= 1<<0
elif syndromes == [0,0,1,0]:
errors.x ^= (1<<0) ^ (1<<4)
elif syndromes == [0,0,1,1]:
errors.x ^= (1<<0) ^ (1<<1)
errors.z ^= 1<<0
elif syndromes == [0,1,0,1]:
errors.x ^= 1<<0
errors.z ^= 1<<4
elif syndromes == [0,1,1,0]:
errors.x ^= (1<<0) ^ (1<<4)
errors.z ^= 1<<4
elif syndromes == [1,0,1,0]:
errors.x ^= (1<<2) ^ (1<<3)
elif syndromes == [1,1,0,0]:
errors.x ^= 1<<2
return 1
elif syndrome2:
if verbose: print "syndrome2"
syndromes = extractSyndromes(errors, errorRates)
if verbose: print syndromes
correctErrorsUsingSyndromes(errors, syndromes)
return 1
if verbose: print "starting syndrome3"
prepZ(5, errors, errorRates)
prepX(6, errors, errorRates)
dualcz(3, 5, errors, errorRates)
cnot(6, 5, errors, errorRates)
cnot(4, 5, errors, errorRates)
cnot(0, 5, errors, errorRates)
cnot(6, 5, errors, errorRates)
dualcz(1, 5, errors, errorRates)
syndrome3 = measZ(5, errors, errorRates)
flag3 = measX(6, errors, errorRates)
if flag3:
if verbose: print "flag3"
syndromes = extractSyndromes(errors, errorRates)
if verbose: print syndromes
if syndromes == [0,0,0,1]:
errors.x ^= (1<<3) ^ (1<<4)
errors.z ^= 1<<4
elif syndromes == [0,0,1,0]:
errors.x ^= 1<<1
errors.z ^= 1<<0
elif syndromes == [0,0,1,1]:
errors.x ^= (1<<0) ^ (1<<1)
errors.z ^= 1<<0
elif syndromes == [0,1,0,1]:
errors.x ^= (1<<3) ^ (1<<4)
elif syndromes == [0,1,1,0]:
errors.x ^= 1<<3
elif syndromes == [1,0,0,0]:
errors.x ^= 1<<1
elif syndromes == [1,0,0,1]:
errors.x ^= (1<<0) ^ (1<<1)
return 1
elif syndrome3:
if verbose: print "syndrome3"
syndromes = extractSyndromes(errors, errorRates)
if verbose: print syndromes
correctErrorsUsingSyndromes(errors, syndromes)
return 1
return 0
# Find least weight representation modulo stabilizers.
def weight(errors):
return bin((errors.x | errors.z) & ((1 << 5) - 1)).count("1")
def reduceError(errors):
stabilizers = [[(1<<0)+(1<<3),(1<<1)+(1<<2)], [(1<<1)+(1<<4),(1<<2)+(1<<3)], [(1<<2)+(1<<0),(1<<3)+(1<<4)], [(1<<3)+(1<<1),(1<<4)+(1<<0)]]
bestErrors = Errors(errors.x, errors.z)
bestWeight = weight(bestErrors)
trialErrors = Errors(0, 0)
for k in range(1, 1<<(len(stabilizers))):
trialErrors.x = errors.x
trialErrors.z = errors.z
for digit in range(len(stabilizers)):
if (k>>digit)&1:
trialErrors.x ^= stabilizers[digit][0]
trialErrors.z ^= stabilizers[digit][1]
if weight(trialErrors) < bestWeight:
bestErrors.x = trialErrors.x
bestErrors.z = trialErrors.z
bestWeight = weight(bestErrors)
return bestErrors
# Run consecutive trials of error correction with physical error rate of gamma, and count the number of failures, i.e., when the trialing error is not correctable by perfect error correction.
# The logical error rate is calculated as the ratio of failures over trials.
def simulateErrorCorrection(gamma, trials):
errors = Errors(0, 0)
errorsCopy = Errors(0, 0)
errorRates0 = ErrorRates(0, 0, 0)
errorRates = ErrorRates((4/15.)*gamma, gamma, (4/15.)*gamma)
failures = 0
for k in xrange(trials):
correctErrors(errors, errorRates)
errorsCopy.x = errors.x
errorsCopy.z = errors.z
correctErrors(errorsCopy, errorRates0)
errorsCopy = reduceError(errorsCopy)
if (errorsCopy.x & ((1<<5)-1)) or (errorsCopy.z & ((1<<5)-1)):
failures += 1
errors.x = 0
errors.z = 0
print failures
# Wrapper function for the plot. More trials are needed for small gammas due to the confidence interval.
gammas = [10**(i/10.-4) for i in range(21)]
for i in range(10):
print "gamma=10^(%d/10-4), trials=10^7"% i
simulateErrorCorrection(gammas[i], 10**7)
for i in range(11):
print "gamma=10^(%d/10-4), trials=10^6"% (i+10)
simulateErrorCorrection(gammas[i+10], 10**6)