forked from PaulENorman/balloon_trajectory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrad_flux.cpp
210 lines (192 loc) · 5.26 KB
/
rad_flux.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
/*
* Code for finding the radiation fluxes (solar and IR)
*
*
* References:
* (1) Numerical Prediction of the Performance of High Altitude Balloons
* F. Kreith and J. F. Kreider
* NCAR TECHNICAL NOTE, 1974
*
* (2) Balloon Ascent: 3-D Simulation Tool for the Ascent and Float
* of High-Altitude Balloons
* R. E. Farley
* AIAA Paper # 2005-7142, 2005
*
* (3) Performance simulation of high altitude scientific balloons
* Q. Dai, X. Fang, X. Li, L. Tian
* Advances in Space Research, 49, 2012
**/
#include "rad_flux.h"
const double Rad_flux::I0 = 1358;
const double Rad_flux::ECC = 0.016708;
const double Rad_flux::P0 = 101325;
const double Rad_flux::cloudAlbedo = 0.6;
/*
* Expression from (2) Eq. 21
*
* @return The incident solar radiation above Earths atm (W/m^2)
*/
double Rad_flux::get_SI0() const {
double ta = 2.*PI*doy/365.;
double ec = pow(((1.+ECC)/(1.-ECC)),2) -1.;
return I0*(1.+0.5*ec*cos(ta));
}
/*
* Expression from http://en.wikipedia.org/wiki/Position_of_the_Sun
*
* @return Approximate solar declination (rad)
*/
double Rad_flux::get_declination() const {
return (-23.44/RTD)*cos(2.*PI*(doy+10)/365);
}
/*
* Expression from (1) Eq. 35
*
* @param lat Lattitute (rad)
* @param h Solar hour angle (rad)
* @return The approximate solar zenith angle (rad)
*/
double Rad_flux::get_zenith(double lat, double h_ang) const {
return acos(sin(lat)*sin(decl)+cos(lat)*cos(decl)*cos(h_ang));
}
/*
* @param lat Lattitude (rad)
* @return The approximate solar hour angle for sunrise
*/
double Rad_flux::get_h0(double lat) const {
return acos(-tan(lat)*tan(get_declination()));
}
/*
* Expression from (1) Eq. 38
*
* @param zen The solar zenith angle (rad)
* @param el Elevation
* @return The approximate air mass (unitless)
*/
double Rad_flux::get_air_mass(double zen, double el) const {
double press = atm->get_P(el);
return (press/P0)*(sqrt(1229 + pow((614*cos(zen)),2))-614*cos(zen));
}
/*
* Expression from (1) Eq. 37
*
* @param zen The solar zenith angle (rad)
* @param el Elevation (m)
* @return The atmospheric trasmittance (unitless)
*/
double Rad_flux::get_trans_atm(double zen, double el) const {
if(fabs(zen) > PI/2.) return 0;
double am = get_air_mass(zen, el);
return 0.5*(exp(-0.65*am) + exp(-0.095*am));
}
/*
* @param zen The solar zenith angle (rad)
* @param el Elevation (m)
* @return The intensity of the direct solar radiation (W/m^2)
*/
double Rad_flux::get_direct_SI(double zen, double el) const {
double SI0 = get_SI0();
double trans = get_trans_atm(zen, el);
return trans*SI0;
}
/*
* Expression from (3) Eq. (6)
* Note: This expression doesn't originate from (3) -- where does it come from?
* Note: Small type in denominator of original expression ?
*
* @param zen The solar zenith angle (rad)
* @param el Elevation (m)
* @return The intensity of the diffuse solar radiation from the sky (W/m^2)
*/
double Rad_flux::get_diffuse_SI(double zen, double el) const {
if(zen > PI/2.) return 0;
double SI0 = get_SI0();
double trans = get_trans_atm(zen, el);
if(el < cloudElev) {
return (1-cloudFrac)*0.5*SI0*sin(PI/2.-zen)*(1.-trans)/(1-1.4*log(trans));
} else {
return 0.5*SI0*sin(PI/2.-zen)*(1.-trans)/(1-1.4*log(trans));
}
}
/*
* Expression from (2) Eq. 26
*
* @param zen The solar zenith angle (rad)
* @param el Elevation (m)
* @return The intensity solar radiation reflected by the Earth (W/m^2)
*/
double Rad_flux::get_reflected_SI(double zen, double el) const {
if(zen > PI/2.) return 0;
double incident_SI = get_SI0();
double tau_atm = get_trans_atm(zen,el);
double albedo;
if(el < cloudElev) {
albedo = (1.-cloudFrac)*albedoGround;
} else {
albedo = (1.-cloudFrac)*(1-cloudFrac)*albedoGround + cloudAlbedo*cloudFrac;
}
return albedo*tau_atm*incident_SI*sin(PI/2.-zen);
}
/*
* Expression from (2) Eq. 24
* Note: Original expression has typo (0.95 should be 0.095, as below)
*
* @param el Elevation (m)
* @return the intensity of IR radiation emitted from earth (W/m^2)
*/
double Rad_flux::get_earth_IR(double el) const {
double press = atm->get_P(el);
double IR_trans = 1.716-0.5*(exp(-0.65*press/P0) +exp(-0.095*press/P0));
double tEarth;
if(el < cloudElev) {
tEarth = tGround;
} else {
tEarth = tGround*(1.-cloudFrac) + atm->get_T(cloudElev)*cloudFrac;
}
return IR_trans*emissGround*SB_CONST*pow(tEarth,4);
}
/*
* Approximate linear fit from for lat 30-40 deg (1) Fig. 17
*
* @param h Altitude (m)
* @return The intensity of IR radiation emitted from the sky (W/m^2)
*/
double Rad_flux::get_sky_IR(double el) const {
return fmax(-0.03*el+300.,50.0);
}
/*
* Set the day of the year
* @param _doy Day of year (day)
*/
void Rad_flux::set_doy(int _doy) {
doy = _doy;
}
/*
* Read coefficients in earth.dat
*/
void Rad_flux::readCoeffs() {
FILE * in = fopen("earth.dat", "r");
if(in == NULL) {
printf("could not find earth.dat\n");
exit(0);
}
char line[BUFSIZ];
fgets(line, BUFSIZ, in);
sscanf(line, "%lg", &albedoGround);
fgets(line, BUFSIZ, in);
sscanf(line, "%lg", &emissGround);
fgets(line, BUFSIZ, in);
sscanf(line, "%lg", &tGround);
fgets(line, BUFSIZ, in);
sscanf(line, "%lg", &cloudFrac);
fgets(line, BUFSIZ, in);
sscanf(line, "%lg", &cloudElev);
}
Rad_flux::Rad_flux(int _doy, Std_atm * _atm) {
readCoeffs();
doy = _doy;
decl = get_declination();
atm = _atm;
}
Rad_flux::~Rad_flux() {
}