forked from PaulENorman/balloon_trajectory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp~
156 lines (135 loc) · 4.29 KB
/
main.cpp~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include "rad_flux.h"
#include "std_atm.h"
#include "sphere_balloon.h"
#include "consts.h"
double lat = 35.08333/RTD;//Lattitude of ABQ,NM
double min_el = 132.6;
int doy = 180;
Std_atm atm;
Rad_flux rad(doy, &atm);
Sphere_balloon bal(&atm, &rad);
//current balloon state
struct State {
double v; //verticle velocity
double el; //elevation (m)
double Ti; //internal temperature (K)
double Ts; //surface temperature (K)
};
//derivative of balloon state wrt time
struct stateDeriv {
double dv;
double del;
double dTi;
double dTs;
};
/*
* @param state Current balloon state
* @return The verticle acceleration of balloon (m/s^2)
*/
double get_a(const State & state) {
double rho_int = atm.get_P(state.el)/(atm.Rsp_air*state.Ti);
double rho_atm = atm.get_rho(state.el);
double F_b = (rho_atm - rho_int)*bal.get_vol()*atm.get_g(state.el);
double F_d = bal.get_Cd(state.v, state.el)*(0.5*rho_atm*fabs(state.v)*state.v)*bal.get_cs_area();
double vm = bal.get_mass() + rho_atm*bal.get_vol() + bal.get_virt_mass()*rho_atm*bal.get_vol();
return (F_b - F_d - bal.get_mass()*atm.get_g(state.el))/vm;
}
/*
/ @param state The current balloon state
* @param h The current hour angle
* @return Rate of change of the surface temperature wrt time (K/s)
*/
double get_dTs(const State & state, const double h) {
double q_rad = bal.get_q_rad(lat, state.el, h);
double q_surf = bal.get_sum_q_surf(q_rad, state.Ts, state.el, state.v);
double q_int = bal.get_sum_q_int(state.Ts, state.Ti, state.el);
return (q_surf-q_int)/bal.get_therm_mass();
}
/*
* @param state Current balloon state
* @return Rate of change of internal temperature (K/s)
*/
double get_dTi(const State & state) {
double q_int = bal.get_sum_q_int(state.Ts, state.Ti, state.el);
double tm_air = atm.get_rho(state.el)*bal.get_vol()*atm.Cp_air0;
return q_int/tm_air;
}
/*
* @param init The initial state of the balloon
* @param dt Time step (s)
* @param h Current hour angle (rad)
* @param d Balloon state derivative
* @return The balloon state derivative dt in the future, given
* an initial deriviative d
*/
stateDeriv eval(const State & init, const double dt, const double h, const stateDeriv & d) {
State s;
s.el = init.el + d.del*dt;
s.v = init.v + d.dv*dt;
if ((s.el < min_el) & (s.v < 0)) {
s.v = 0;
s.el = min_el;
}
s.Ti = init.Ti + d.dTi*dt;
s.Ts = init.Ts + d.dTs*dt;
stateDeriv out;
out.del = s.v;
out.dv = get_a(s);
out.dTs = get_dTs(s,h + dt*((PI/6.)/(3600.))); //dt is converted to hour angle
out.dTi = get_dTi(s);
return out;
}
/*
* Use RK4 method to integrate a balloon state to dt in the future
* @param state current balloon state
* @param h current hour angle (rad)
* @param dt time step (s)
*/
void integrate(State & state, const double h, const double dt) {
stateDeriv zero;
zero.del = 0;
zero.dv = 0;
zero.dTs = 0;
zero.dTi = 0;
stateDeriv a = eval(state, 0.0, h, zero);
stateDeriv b = eval(state, 0.5*dt, h, a);
stateDeriv c = eval(state, 0.5*dt, h, b);
stateDeriv d = eval(state, dt, h, c);
double del_dt = (1./6.)*(a.del + 2*b.del + 2*c.del + d.del);
double dv_dt = (1./6.)*(a.dv + 2*b.dv + 2*c.dv + d.dv);
double dTi_dt = (1./6.)*(a.dTi + 2*b.dTi + 2*c.dTi + d.dTi);
double dTs_dt = (1./6.)*(a.dTs + 2*b.dTs + 2*c.dTs + d.dTs);
state.el += del_dt*dt;
state.v += dv_dt*dt;
if ((state.el < min_el) & (state.v < 0)) { //balloon does not descend below el = min_el
state.v = 0;
state.el = min_el;
}
state.Ti += dTi_dt*dt;
state.Ts += dTs_dt*dt;
}
int main(int nargs, char ** args) {
double h0 = rad.get_h0(lat); //hour angle of dawn/sunset
State cur;
cur.el = min_el;
cur.v = 0;
cur.Ts = atm.get_T(cur.el);
cur.Ti = atm.get_T(cur.el);
double dt = 1.0;
double dh = 15*dt/(RTD*3600);
int i = 0;
printf("time(hr), elevation(m), internal T(K), internal-ambient T (K), velocity (m/s)\n");
for(double h = -1.1*h0; h < 2.1*h0; h+= dh) {
double t = (((h+h0)*RTD/15.)*3600);
integrate(cur,h,dt);
if(i%100==0) {
printf("%f %f %f %f %f\n", t/3600, cur.el, cur.Ti, cur.Ti-atm.get_T(cur.el), cur.v);
}
if( (h > h0) & (cur.el == min_el)) break;
i++;
}
return 0;
}