forked from tkschuler/MarsSHAB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathradiation.py
234 lines (189 loc) · 7.52 KB
/
radiation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import math
import fluids
import numpy as np
import matplotlib.pyplot as plt
#EARTH RADIATION
class Radiation:
#Radiation Constants
I0 = 1358 #Direct Solar Radiation Level
e = 0.016708 #Eccentricity of Earth's Orbit
P0 = 101325 #Standard Atmospheric Pressure at Sea Level
cloudElev = 3000 #m
cloudFrac = 0.0 #percent cloud coverage [0,1]
cloudAlbedo = .6
albedoGround = .2 #ground albedo [0,1]
tGround = 293
emissGround = .95
SB = 5.670373E-8
RE = 6371000 #m Radius of Earth
radAbs = .8
emissEnv = radAbs
radRef= .1
radTrans = .1
def __init__(self, doy, lat, h_ang, el):
self.doy = doy
self.lat = lat
self.h_ang = h_ang
self.el = el
def get_SI0(self):
""" Incident solar radiation
:returns: The incident solar radiation above Earths atm (W/m^2)
:rtype: float
"""
f = 2*math.pi*self.doy/365 #true anomaly
e2 = pow(((1.+Radiation.e)/(1.-Radiation.e)),2) -1.
return Radiation.I0*(1.+0.5*e2*math.cos(f))
def get_declination(self):
"""Expression from http://en.wikipedia.org/wiki/Position_of_the_Sun
:returns: Approximate solar declination (rad)
:rtype: float
"""
return -.4091*math.cos(2*math.pi*(self.doy+10)/365)
def get_zenith(self,lat, h_ang):
"""get zenith angle
:param lat: Lattitude (rad)
:type lat: float
:param h_ang: Solar Hour Angle (rad)
:type h_ang: float
:returns: The approximate solar hour angle
:rtype: float
"""
decl = self.get_declination()
return math.acos(math.sin(self.lat)*math.sin(decl)+math.cos(self.lat)*math.cos(decl)*math.cos(h_ang))
def get_air_mass(self,zen, el):
"""Air Mass at elevation
:param zen: Solar Angle (rad)
:type zen: float
:param el: Elevation (m)
:type el: float
:returns: The approximate air mass (unitless)
:rtype: float
"""
atm = fluids.atmosphere.ATMOSPHERE_1976(el)
p = atm.P #pressure at current elevation
am = (p/Radiation.P0)*(math.sqrt(1229 + pow((614*math.cos(zen)),2))-614*math.cos(zen))
return am
def get_trans_atm(self,zen,el):
"""get zenith angle
:param zen: Solar Angle (rad)
:type zen: float
:param el: Elevation (m)
:type el: float
:returns: The atmospheric trasmittance (unitless)
:rtype: float
"""
if math.fabs(zen) > math.pi/2.:
return 0.0
am = self.get_air_mass(zen, el)
return 0.5*(math.exp(-0.65*am) + math.exp(-0.095*am))
def get_direct_SI(self,zen,el):
"""Get Direct Solar Radiation
:param zen: Solar Angle (rad)
:type zen: float
:param el: Elevation (m)
:type el: float
:returns: Tntensity of the direct solar radiation (W/m^2)
:rtype: float
"""
SI0 = self.get_SI0()
trans = self.get_trans_atm(zen, el)
return trans*SI0
def get_diffuse_SI(self,zen,el):
"""Diffuse Solar Radiation from sky
:param zen: Solar Angle (rad)
:type zen: float
:param el: Elevation (m)
:type el: float
:returns: The intensity of the diffuse solar radiation from the sky (W/m^2)
:rtype: float
"""
if(zen > math.pi/2.):
return 0.0
SI0 = self.get_SI0()
trans = self.get_trans_atm(zen, el)
if el < Radiation.cloudElev:
return (1-Radiation.cloudFrac)*0.5*SI0*math.sin(math.pi/2.-zen)*(1.-trans)/(1-1.4*math.log(trans))
else:
return 0.5*SI0*math.sin(math.pi/2.-zen)*(1.-trans)/(1-1.4*math.log(trans))
def get_reflected_SI(self,zen,el):
"""Diffuse Solar Radiation from sky
:param zen: Solar Angle (rad)
:type zen: float
:param el: Elevation (m)
:type el: float
:returns: The intensity solar radiation reflected by the Earth (W/m^2)
:rtype: float
"""
if(zen > math.pi/2.):
return 0.0
incident_SI = self.get_SI0()
tau_atm = self.get_trans_atm(zen,el)
if el < Radiation.cloudElev:
albedo = (1.-Radiation.cloudFrac)*Radiation.albedoGround;
else:
albedo = (1.-Radiation.cloudFrac)*(1-Radiation.cloudFrac)*Radiation.albedoGround + Radiation.cloudAlbedo*Radiation.cloudFrac
return albedo*tau_atm*incident_SI*math.sin(math.pi/2.-zen)
def get_earth_IR(self,el):
"""Infared Radiation from Earth's surface
:param el: Elevation (m)
:type el: float
:returns: Intensity of IR radiation emitted from earth (W/m^2)
:rtype: float
"""
atm = fluids.atmosphere.ATMOSPHERE_1976(el)
p = atm.P #pressure at current elevation
IR_trans = 1.716-0.5*(math.exp(-0.65*p/Radiation.P0) + math.exp(-0.095*p/Radiation.P0))
if el < Radiation.cloudElev:
tEarth = Radiation.tGround
else:
clouds = fluids.atmosphere.ATMOSPHERE_1976(Radiation.cloudElev)
tEarth = Radiation.tGround*(1.-Radiation.cloudFrac) + clouds.T*Radiation.cloudFrac
return IR_trans*Radiation.emissGround*Radiation.SB*pow(tEarth,4)
def get_sky_IR(self,el):
"""Infared Radiation from Sky
:param el: Elevation (m)
:type el: float
:returns: Intensity of IR radiation emitted from sky (W/m^2)
:rtype: float
"""
return np.fmax(-0.03*el+300.,50.0)
def get_rad_total(self,lat,el,h,d):
"""Total Radiation as a function of elevation, time of day, and balloon surface area
:param el: Elevation (m)
:type el: float
:returns: Total radiation (W/m^2)
:rtype: float
"""
#some constant things
#this doesn't make sense
radRef = Radiation.radRef + Radiation.radRef*Radiation.radRef + Radiation.radRef*Radiation.radRef*Radiation.radRef
totAbs = Radiation.radAbs + Radiation.radAbs*Radiation.radTrans + Radiation.radAbs*Radiation.radTrans*radRef
projArea = 0.25*math.pi*d*d
surfArea = math.pi*d*d
#--------------------------------------------------------------------------
hca = math.asin(Radiation.RE/(Radiation.RE+el)) #half cone angle
#print "el", el
#print "hca: ", hca
vf = 0.5*(1. - math.cos(hca)) #viewfactor
zen = self.get_zenith(self.lat, h)
direct_I = self.get_direct_SI(zen, el)
power_direct = direct_I*totAbs*projArea
diffuse_I = self.get_diffuse_SI(zen, el)
power_diffuse = diffuse_I*totAbs*(1.-vf)*surfArea
reflected_I = self.get_reflected_SI(zen, el)
power_reflected = reflected_I*totAbs*vf*surfArea
earth_IR = self.get_earth_IR(el)
power_earth_IR = earth_IR*totAbs*vf*surfArea
#print "totAbs", totAbs, "vf," , vf, "surfArea", surfArea
sky_IR = self.get_sky_IR(el)
power_sky_IR = sky_IR*totAbs*(1.-vf)*surfArea
#print "\npower_sky_IR", power_sky_IR, "power_earth_IR", power_earth_IR, "power_reflected", power_reflected, "power diffuse", power_diffuse, "power_direct", power_direct
rad_tot = (power_direct+power_diffuse+power_reflected+power_earth_IR+power_sky_IR) #Somewhere along the way this became a factor of 100 greater?
#print rad_tot
return rad_tot
doy = 306 #temporary day of year
lat = math.radians(35.106766) # rad
h_ang = 0
el = 0 #elevation (m)
r = Radiation(doy,lat,-2.064989,136.6)
q_rad = r.get_rad_total(lat, 136.6, -2.064989,5.79)