-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheteTree.py
310 lines (266 loc) · 8.48 KB
/
eteTree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
from __future__ import division
from ete3 import Tree, NodeStyle, TreeStyle, faces, AttrFace
from abberations import abberations as abbrs
from operator import itemgetter
import numpy as np
print "="*35, " START ", "="*35
# =============================================================================
# VARIABLES
# =============================================================================
genDataSet = []
chosenNodes = []
qValue = 0.05 # Easiest value, also used 0.1, 0.25, 0.5
# =============================================================================
# Basic tree style
ts = TreeStyle()
#ts.show_node_name = True
ts.show_leaf_name = True
ts.show_branch_length = True
ts.show_branch_support = True
# =============================================================================
def generateChildren(node,nrVertices,mutations,oneChild = False,oneLevel=False):
""" mutations will be emptied, therefor it needs to be a copy """
if(nrVertices == 1):
tmpName = np.random.choice(mutations)
mutations.remove(tmpName)
node.add_child(name = tmpName)
return node
elif(nrVertices > 1):
values = []
if (oneChild):
value = nrVertices
values.append(value)
else:
while nrVertices > 0:
if (oneLevel):
value = 1
else:
value = np.random.randint(0, nrVertices)+1
values.append(value)
nrVertices -= value
for i in range(len(values)):
tmpName = np.random.choice(mutations)
mutations.remove(tmpName)
node.add_child(name = tmpName)
tmp = values[i] - 1
if (tmp > 0):
generateChildren(node.children[i],tmp,mutations,oneChild,oneLevel) # Each child gets a int of children
def generate(nrOfVertices,mutations,oneChild=False,oneLevel=False):
t = Tree(name= "root")#(name = np.random.choice(abbrs)) # Root it set to same in all trees, confirmed by Jens.
#print "Starting nr of nodes: ",nrOfVertices
if ("root" in mutations):
mutations.remove("root")
nrOfVertices -=1
generateChildren(t,nrOfVertices,mutations,oneChild,oneLevel)
#t.show()
return t
def setRandomTreeNodes(tree, OT = False, test = False, Px = 0.9,Pz =0.9, Zonly = False): # global = True
global qValue
count = 0
#Px = 0.9
Ez = 0.05
Ex = 0.05
if (Zonly):
for node in tree.traverse():
if (node.is_root()):
node.dist = 1
node.add_feature("Pz", 1)
node.add_feature("Px", 1) #
else:
node.dist = np.random.uniform(0.1,1) # See EQ (7) #Jens suggsted using 0.8
node.add_feature("Pz", node.dist)
elif (test):
for node in tree.traverse():
if (node.is_root()):
node.dist = 1
node.add_feature("Pz", 1)
node.add_feature("Px", 1) #
node.add_feature("Ex", 0)
node.add_feature("Ez", 0)
else:
node.dist = Pz # See EQ (7) #Jens suggsted using 0.8
node.add_feature("Pz", Pz)
if(OT): # See EQ (8)# DEBUGG
node.add_feature("Px", 1) #
else:
node.add_feature("Px", Px) #
node.add_feature("Ex", Ex)
node.add_feature("Ez", Ez)
else:
for node in tree.traverse():
if (node.is_root()):
node.dist = 1
node.add_feature("Pz", 1)
node.add_feature("Px", 1) #
node.add_feature("Ex", 0)
node.add_feature("Ez", 0)
else:
node.dist = np.random.uniform(0.1,1) # See EQ (7) #Jens suggsted using 0.8
node.add_feature("Pz", node.dist)
#tmp = np.random.uniform(0.01,qValue)
if(OT): # See EQ (8)# DEBUGG
node.add_feature("Px", 1) #
else:
node.add_feature("Px", 1-np.random.uniform(0.01,qValue)) # 1-tmp
node.add_feature("Ex", np.random.uniform(0.01,qValue)) # tmp
node.add_feature("Ez", np.random.uniform(0.01,qValue)) # tmp
return tree
def treeProb(tree):
prob = 1
for node in tree.traverse():
prob *= node.dist
prob
return prob
def setTreeNodesCondProb(tree,allEdgesProbs): # X set to 1.
for node in tree.traverse():
if (node.is_root()):
node.dist = 1
node.add_feature("Px", 1) # UNSURE about this
else:
for edge in allEdgesProbs:
#print "Count"
if (edge[0] == node.name and edge[1] == node.up.name):
#print "Found it: ", node.dist
node.dist = edge[4] #node.name, node.parent.name
break
node.add_feature("Px", 1) # See EQ (8)# DEBUGG
def createDataFunc(tree,dataSet = [],observed= True): # Returns sets of mutations
if (observed):
if tree.is_root():
dataSet.append((tree.name,True)) # UNSURE, appending root "mutation" to tumors.
for node in tree.children:
if (np.random.uniform(0,1) <= node.dist):
createDataFunc(node,dataSet,True)
else:
createDataFunc(node,dataSet,False)
else:
tmpPx = tree.Px
if (np.random.uniform(0,1) <= tmpPx):
dataSet.append((tree.name,True))
else:
dataSet.append((tree.name,False))
for node in tree.children:
if (np.random.uniform(0,1) <= node.dist):
createDataFunc(node,dataSet,True)
else:
createDataFunc(node,dataSet,False)
else:
dataSet.append((tree.name,False))
for node in tree.children:
createDataFunc(node,dataSet,False)
return
def createDataFuncHash(tree,dataSet = [],observed= True): # Returns sets of mutations
if (observed):
if tree.is_root():
dataSet[tree.name] = True # UNSURE, appending root "mutation" to tumors.
for node in tree.children:
if (np.random.uniform(0,1) <= node.dist):
createDataFuncHash(node,dataSet,True)
else:
createDataFuncHash(node,dataSet,False)
else:
tmpPx = tree.Px
if (np.random.uniform(0,1) <= tmpPx):
dataSet[tree.name] = True
else:
dataSet[tree.name] = False
for node in tree.children:
if (np.random.uniform(0,1) <= node.dist):
createDataFuncHash(node,dataSet,True)
else:
createDataFuncHash(node,dataSet,False)
else:
dataSet[tree.name] = False
for node in tree.children:
createDataFuncHash(node,dataSet,False)
return
def evaluateTrees(tree1,tree2):
ref_edges_in_source = tree1.compare(tree2,unrooted=True)
return ref_edges_in_source
def createData(tree, nrOfDatapoints):
data = []
for i in range(nrOfDatapoints):
datapoint = []
createDataFunc(tree,datapoint)
data.append(datapoint)
return data
def createDataHash(tree,nrOfDatapoints): # USED?
data = []
for i in range(nrOfDatapoints):
datapoint = {}
createDataFuncHash(tree,datapoint)
data.append(datapoint)
return data
def getAllEdges(mutations):
""" Takes a set of unique mutations, return a list of all possible edges"""
allEdges = []
for mutation in mutations:
print mutation
for mutation2 in mutations:
if not (mutation == mutation2): # No edges connecting to themselves.
tmp = []
tmp.append(mutation)
tmp.append(mutation2)
allEdges.append(tmp)
return allEdges
def getEdges(tree): #Returns a list of touples, edges representet by nodes at it's ends
edges = []
count = 0
for node in tree.traverse():
# Do some analysis on node
if not(node.is_root()):
edges.append((node.up.name,node.name))
return edges
def getSimilarity(edges1,edges2):
""" Takes two sets of edges and return the probability of the later occuring
in the first set """
count = 0
for edge in edges2:
if (edge in edges1):
count +=1
return count / len(edges2)
def calcProbX(data): # probability that a mutation is in a toumor
""" Input data: a set of tumors containing mutatuions. returns a dict,
containing mutations & their probablitiy"""
flatData = [item for sublist in data for item in sublist]
flatDataSet = list(set(flatData))
mutXProbs = {}
for mutation in flatDataSet: # Could be remade more effective
mutCount = 0
for tumor in data:
if (mutation in tumor):
mutCount +=1
mutXProbs[mutation] = mutCount/len(data) # Occurences / Total nr tumors
return mutXProbs
def condProbs(xProbs,allEdgesProbs):
for edge in allEdgesProbs:
edge.append(edge[2] / xProbs[edge[1]])
def calcProbXY(data,allEdges):
""" probability that mutations X and Y both are observed in tumor"""
for edge in allEdges:
count = 0
count1 = 0
for tumor in data:
if ((edge[0] in tumor) or (edge[1] in tumor)):
count1 += 1
if ((edge[0] in tumor) and (edge[1] in tumor)):
count += 1
edge.append(count/len(data))
edge.append(count/count1)
return allEdges
#def adjustTreeWeigth(tree,weigth):
"""
def calcCondProb(data,allEdges):
# probability that mutations X and Y both are observed in tumor
for edge in allEdges:
countX = 0
countY = 0
for tumor in data:
if (edge[0] in tumor):# or (edge[1] in tumor)):
countX += 1
if (edge[1] in tumor):# and (edge[1] in tumor)):
countY += 1
#edge.append(count/len(data))
#edge.append(count/count1)
return allEdges
"""