-
Notifications
You must be signed in to change notification settings - Fork 4
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Restructuring inference methods #190
Comments
"Final" structure to the wrapper functions #----- PREPARE SERODATA prepare_sero_data <- function(raw_data) { stan_sero_data <- data.frame(n_tested, n_seropositive, year_survey, age_min, age_max) } my_data <- prepare_sero_data(my_raw_data) #----- SET SEROMODEL set_sero_model <- function(model = "time", check_set_foi_windows <- function (sf_data, foi_windows){ if (!exists(foi_windows)) {
} else (check_set_foi_windows(foi_windows)) return(list(model = model, } my_model <- set_sero_model(model = "time", set_sero_priors <- function(my_model, Restricting the parameters according to IID vs RW optionif (type == "IID") {if(exists("foi_1")| exists("foi_i")| exists("sigma_cauchy_rw"))print("this is IDD so there is only a foi value expected")stop()Jaime is gonna solve this}return(list_of_priors_to_go_to_stan) my_priors <- set_sero_priors(my_model, #----- FIT SEROMODEL fit_sero_model <- function(sf_model = my_model, This function does:1. Select the stanfile2. Compile the stanfile3. Run the modelreturn (sero_stan_file)} my_fit <- fit_sero_model(sf_model = my_model, |
First, we set up the data:
Then we currently fit the model to the data:
Our proposed changes are:
Time-varying:
Age-varying:
Time- and age-varying:
The text was updated successfully, but these errors were encountered: