-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtune_lr.py
103 lines (86 loc) · 3.87 KB
/
tune_lr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
"""
Script used to tune the learning rates of the models. It was tuned only for a batch size of 128 and
was then scaled appropriately for other batch sizes.
"""
import numpy as np
from main import construct_and_train
from utils.pickle import save_obj, load_obj
from utils.hyperparameters import get_experiment_hyperparameters, get_experiment_name
base_folder = 'lr_tuning/'
num_epochs = 100
batch_size = 128
def get_tuned_learning_rate(model, dataset, optimizer):
"""
Returns the learning rate for the given experiment once the tuning has been made.
:param model: 'vgg', 'vggnonorm', 'resnet' or 'lstm'
:param dataset: 'cifar10' or 'cifar100'
:param optimizer: 'sgdm', 'ssgd' or 'sssgd'
:return: lr
"""
name = base_folder + get_experiment_name(model, dataset, optimizer)
lr_space = load_obj('./results/' + name + 'lr_space')
losses = load_obj('./results/' + name + 'losses')
return lr_space[np.nanargmin(losses)]
def tune_learning_rate(model, dataset, optimizer, base_name=None):
"""
Tune the learning rate for a given experiment (batch size 128)
The results are saved in base_folder + experiment_name if base_name is None,
or in base_folder + base_name otherwise
:param model: 'vgg', 'vggnonorm', 'resnet' or 'lstm'
:param dataset: 'cifar10' or 'cifar100'
:param optimizer: 'sgdm', 'ssgd' or 'sssgd'
:param base_name: If you want to have a custom name for the saving folder
"""
model = model.lower()
dataset = dataset.lower()
optimizer = optimizer.lower()
if base_name is None:
base_name = base_folder + get_experiment_name(model, dataset, optimizer)
else:
base_name = base_folder + base_name
hyperparameters = get_experiment_hyperparameters(model, dataset, optimizer)
momentum = hyperparameters['momentum']
weight_decay = hyperparameters['weight_decay']
comp = hyperparameters['comp']
noscale = hyperparameters['noscale']
memory = hyperparameters['memory']
mnorm = hyperparameters['mnorm']
mback = hyperparameters['mback']
losses = []
# lr_space = np.logspace(-5, 1, 9)
lr_space = np.logspace(-7, -1, 9)
for index, lr in enumerate(lr_space):
name = base_name + 'lr' + str(index)
res = construct_and_train(name=name, dataset=dataset, model=model, resume=False, epochs=num_epochs,
lr=lr, batch_size=batch_size, momentum=momentum, weight_decay=weight_decay,
comp=comp, noscale=noscale, memory=memory, mnorm=mnorm, mback=mback)
best_loss = np.nanmin(res['test_losses'])
losses.append(best_loss)
losses = np.array(losses)
save_obj(lr_space, './results/' + base_name + 'lr_space')
save_obj(losses, './results/' + base_name + 'losses')
with open('./results/' + base_name + 'README.md', 'w') as file:
file.write('Best learning rate : {}\\\n'.format(lr_space[np.nanargmin(losses)]))
file.write('Best loss reached over {0} epochs : {1}\n'.format(num_epochs, np.nanmin(losses)))
if __name__ == '__main__':
"""
tune_learning_rate('vgg', 'cifar10', 'sgdm')
tune_learning_rate('vgg', 'cifar10', 'ssgd')
tune_learning_rate('vgg', 'cifar10', 'sssgd')
tune_learning_rate('vgg', 'cifar10', 'ssgdf')
"""
"""
tune_learning_rate('resnet', 'cifar100', 'sgdm')
tune_learning_rate('resnet', 'cifar100', 'ssgd')
tune_learning_rate('resnet', 'cifar100', 'sssgd')
tune_learning_rate('resnet', 'cifar100', 'ssgdf')
"""
"""
tune_learning_rate('vgg', 'cifar10', 'signum')
tune_learning_rate('resnet', 'cifar100', 'signum')
"""
tune_learning_rate('vggnonorm', 'cifar10', 'sgdm')
tune_learning_rate('vggnonorm', 'cifar10', 'signum')
tune_learning_rate('vggnonorm', 'cifar10', 'sssgd')
tune_learning_rate('vggnonorm', 'cifar10', 'ssgdf')
# Sign, noscale, no memory, momentum 0.9, weight decay