-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain_experiments.py
65 lines (51 loc) · 2.86 KB
/
main_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
"""
Main experiments that were conducted, after the learning rate tuning.
"""
from main import construct_and_train
from utils.hyperparameters import get_experiment_hyperparameters, get_experiment_name
from tune_lr import get_tuned_learning_rate
base_folder = 'main_experiments/'
def run_experiment(model, dataset, optimizer, prefix='', batch_size=128, num_exp=3, start_at=1):
base_name = base_folder + 'batchsize-' + str(batch_size) + '/' \
+ prefix + get_experiment_name(model, dataset, optimizer)
hyperparameters = get_experiment_hyperparameters(model, dataset, optimizer)
momentum = hyperparameters['momentum']
weight_decay = hyperparameters['weight_decay']
comp = hyperparameters['comp']
noscale = hyperparameters['noscale']
memory = hyperparameters['memory']
mnorm = hyperparameters['mnorm']
mback = hyperparameters['mback']
num_epochs = [100, 50, 50]
for exp_index in range(start_at, num_exp + start_at):
resume = False
name = base_name + str(exp_index) + '/'
lr = get_tuned_learning_rate(model, dataset, optimizer)*batch_size/128
print('Tuned lr : {}'.format(lr))
for epochs in num_epochs:
construct_and_train(name=name, dataset=dataset, model=model, resume=resume, epochs=epochs,
lr=lr, batch_size=batch_size, momentum=momentum, weight_decay=weight_decay,
comp=comp, noscale=noscale, memory=memory, mnorm=mnorm, mback=mback)
resume = True
lr /= 10
if __name__ == '__main__':
# run_experiment('vgg', 'cifar10', 'sgdm', batch_size=8)
# run_experiment('vgg', 'cifar10', 'ssgdf', batch_size=8)
# run_experiment('vgg', 'cifar10', 'signum', batch_size=8)
# run_experiment('vgg', 'cifar10', 'sssgd', batch_size=8)
# run_experiment('vggnonorm', 'cifar10', 'sgdm', batch_size=128)
# run_experiment('vggnonorm', 'cifar10', 'ssgdf', batch_size=128)
# run_experiment('vggnonorm', 'cifar10', 'signum', batch_size=128)
# run_experiment('vggnonorm', 'cifar10', 'sssgd', batch_size=128)
# run_experiment('resnet', 'cifar100', 'sgdm', batch_size=128)
# run_experiment('resnet', 'cifar100', 'ssgdf', batch_size=128)
# run_experiment('resnet', 'cifar100', 'signum', batch_size=128)
# run_experiment('resnet', 'cifar100', 'sssgd', batch_size=128)
# run_experiment('resnet', 'cifar100', 'sgdm', batch_size=8)
# run_experiment('resnet', 'cifar100', 'ssgdf', batch_size=8)
# run_experiment('resnet', 'cifar100', 'signum', batch_size=8)
# run_experiment('resnet', 'cifar100', 'sssgd', batch_size=8)
# run_experiment('resnet', 'cifar100', 'sgdm', batch_size=32)
# run_experiment('resnet', 'cifar100', 'ssgdf', batch_size=32)
run_experiment('resnet', 'cifar100', 'ssgdf', batch_size=128)
# run_experiment('resnet', 'cifar100', 'sssgd', batch_size=32)