-
Notifications
You must be signed in to change notification settings - Fork 6
/
text2sql_data_generator.py
298 lines (250 loc) · 14 KB
/
text2sql_data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import json
import copy
import argparse
import random
import numpy as np
prompt_temple = {
"data_name": "spider",
"id": 0,
"db_id": "",
"chat_rounds": [
{
"role": "system",
"content": "",
"chat_round_id": 0
},
{
"role": "human",
"content": "",
"chat_round_id": 1
},
{
"role": "bot",
"content": "",
"chat_round_id": 2
}
]
}
def parse_option():
parser = argparse.ArgumentParser("command line arguments for generating the ranked dataset.")
parser.add_argument('--input_dataset_path', type = str, default = "./data/pre-processing/dev_with_probs.json",
help = 'filepath of the input dataset.')
parser.add_argument('--output_dataset_path', type = str, default = "./data/pre-processing/resdsql_dev.json",
help = 'filepath of the output dataset.')
parser.add_argument('--topk_table_num', type = int, default = 4,
help = 'we only remain topk_table_num tables in the ranked dataset (k_1 in the paper).')
parser.add_argument('--topk_column_num', type = int, default = 5,
help = 'we only remain topk_column_num columns for each table in the ranked dataset (k_2 in the paper).')
parser.add_argument('--mode', type = str, default = "eval",
help = 'type of the input dataset, options: train, eval, test.')
parser.add_argument('--noise_rate', type = float, default = 0.08,
help = 'the noise rate in the ranked training dataset (needed when the mode = "train")')
parser.add_argument('--use_contents', action = 'store_true',
help = 'whether to add database contents in the input sequence.')
parser.add_argument('--add_fk_info', action = 'store_true',
help = 'whether to add foreign key in the input sequence.')
parser.add_argument('--output_skeleton', action = 'store_true',
help = 'whether to add skeleton in the output sequence.')
parser.add_argument("--target_type", type = str, default = "sql",
help = "sql or natsql.")
opt = parser.parse_args()
return opt
def lista_contains_listb(lista, listb):
for b in listb:
if b not in lista:
return 0
return 1
def prepare_input_and_output(opt, ranked_data):
question = ranked_data["question"]
schema_sequence = ""
for table_id in range(len(ranked_data["db_schema"])):
table_name_original = ranked_data["db_schema"][table_id]["table_name_original"]
# add table name
schema_sequence += " | " + table_name_original + " : "
column_info_list = []
for column_id in range(len(ranked_data["db_schema"][table_id]["column_names_original"])):
# extract column name
column_name_original = ranked_data["db_schema"][table_id]["column_names_original"][column_id]
db_contents = ranked_data["db_schema"][table_id]["db_contents"][column_id]
# use database contents if opt.use_contents = True
if opt.use_contents and len(db_contents) != 0:
column_contents = " , ".join(db_contents)
column_info = table_name_original + "." + column_name_original + " ( " + column_contents + " ) "
else:
column_info = table_name_original + "." + column_name_original
column_info_list.append(column_info)
if opt.target_type == "natsql":
column_info_list.append(table_name_original + ".*")
# add column names
schema_sequence += " , ".join(column_info_list)
if opt.add_fk_info:
for fk in ranked_data["fk"]:
schema_sequence += " | " + fk["source_table_name_original"] + "." + fk["source_column_name_original"] + \
" = " + fk["target_table_name_original"] + "." + fk["target_column_name_original"]
# remove additional spaces in the schema sequence
while " " in schema_sequence:
schema_sequence = schema_sequence.replace(" ", " ")
# input_sequence = question + schema sequence
input_sequence = question + schema_sequence
if opt.output_skeleton:
if opt.target_type == "sql":
output_sequence = ranked_data["sql_skeleton"] + " | " + ranked_data["norm_sql"]
elif opt.target_type == "natsql":
output_sequence = ranked_data["natsql_skeleton"] + " | " + ranked_data["norm_natsql"]
else:
if opt.target_type == "sql":
output_sequence = ranked_data["norm_sql"]
elif opt.target_type == "natsql":
output_sequence = ranked_data["norm_natsql"]
return input_sequence, output_sequence
def generate_train_ranked_dataset(opt):
with open(opt.input_dataset_path) as f:
dataset = json.load(f)
output_dataset = []
for data_id, data in enumerate(dataset):
ranked_data = dict()
ranked_data["question"] = data["question"]
ranked_data["sql"] = data["sql"] # unused
ranked_data["norm_sql"] = data["norm_sql"]
ranked_data["sql_skeleton"] = data["sql_skeleton"]
ranked_data["natsql"] = data["natsql"] # unused
ranked_data["norm_natsql"] = data["norm_natsql"]
ranked_data["natsql_skeleton"] = data["natsql_skeleton"]
ranked_data["db_id"] = data["db_id"]
ranked_data["db_schema"] = []
# record ids of used tables
used_table_ids = [idx for idx, label in enumerate(data["table_labels"]) if label == 1]
topk_table_ids = copy.deepcopy(used_table_ids)
if len(topk_table_ids) < opt.topk_table_num:
remaining_table_ids = [idx for idx in range(len(data["table_labels"])) if idx not in topk_table_ids]
# if topk_table_num is large than the total table number, all tables will be selected
if opt.topk_table_num >= len(data["table_labels"]):
topk_table_ids += remaining_table_ids
# otherwise, we randomly select some unused tables
else:
randomly_sampled_table_ids = random.sample(remaining_table_ids, opt.topk_table_num - len(topk_table_ids))
topk_table_ids += randomly_sampled_table_ids
# add noise to the training set
if random.random() < opt.noise_rate:
random.shuffle(topk_table_ids)
for table_id in topk_table_ids:
new_table_info = dict()
new_table_info["table_name_original"] = data["db_schema"][table_id]["table_name_original"]
# record ids of used columns
used_column_ids = [idx for idx, column_label in enumerate(data["column_labels"][table_id]) if column_label == 1]
topk_column_ids = copy.deepcopy(used_column_ids)
if len(topk_column_ids) < opt.topk_column_num:
remaining_column_ids = [idx for idx in range(len(data["column_labels"][table_id])) if idx not in topk_column_ids]
# same as the selection of top-k tables
if opt.topk_column_num >= len(data["column_labels"][table_id]):
random.shuffle(remaining_column_ids)
topk_column_ids += remaining_column_ids
else:
randomly_sampled_column_ids = random.sample(remaining_column_ids, opt.topk_column_num - len(topk_column_ids))
topk_column_ids += randomly_sampled_column_ids
# add noise to the training set
if random.random() < opt.noise_rate and table_id in used_table_ids:
random.shuffle(topk_column_ids)
new_table_info["column_names_original"] = [data["db_schema"][table_id]["column_names_original"][column_id] for column_id in topk_column_ids]
new_table_info["db_contents"] = [data["db_schema"][table_id]["db_contents"][column_id] for column_id in topk_column_ids]
ranked_data["db_schema"].append(new_table_info)
# record foreign keys
table_names_original = [table["table_name_original"] for table in data["db_schema"]]
needed_fks = []
for fk in data["fk"]:
source_table_id = table_names_original.index(fk["source_table_name_original"])
target_table_id = table_names_original.index(fk["target_table_name_original"])
if source_table_id in topk_table_ids and target_table_id in topk_table_ids:
needed_fks.append(fk)
ranked_data["fk"] = needed_fks
input_sequence, output_sequence = prepare_input_and_output(opt, ranked_data)
# record table_name_original.column_name_original for subsequent correction function during inference
tc_original = []
for table in ranked_data["db_schema"]:
for column_name_original in ["*"] + table["column_names_original"]:
tc_original.append(table["table_name_original"] + "." + column_name_original)
output_dataset.append(
{
"db_id": data["db_id"],
"input_sequence": input_sequence,
"output_sequence": output_sequence,
"tc_original": tc_original
}
)
with open(opt.output_dataset_path, "w") as f:
f.write(json.dumps(output_dataset, indent = 2, ensure_ascii = False))
def generate_eval_ranked_dataset(opt):
with open(opt.input_dataset_path) as f:
dataset = json.load(f)
table_coverage_state_list, column_coverage_state_list = [], []
output_dataset = []
for data_id, data in enumerate(dataset):
ranked_data = dict()
ranked_data["question"] = data["question"]
ranked_data["sql"] = data["sql"]
ranked_data["norm_sql"] = data["norm_sql"]
ranked_data["sql_skeleton"] = data["sql_skeleton"]
ranked_data["natsql"] = data["natsql"]
ranked_data["norm_natsql"] = data["norm_natsql"]
ranked_data["natsql_skeleton"] = data["natsql_skeleton"]
ranked_data["db_id"] = data["db_id"]
ranked_data["db_schema"] = []
table_pred_probs = list(map(lambda x:round(x,4), data["table_pred_probs"]))
# find ids of tables that have top-k probability
topk_table_ids = np.argsort(-np.array(table_pred_probs), kind="stable")[:opt.topk_table_num].tolist()
# if the mode == eval, we record some information for calculating the coverage
if opt.mode == "eval":
used_table_ids = [idx for idx, label in enumerate(data["table_labels"]) if label == 1]
table_coverage_state_list.append(lista_contains_listb(topk_table_ids, used_table_ids))
for idx in range(len(data["db_schema"])):
used_column_ids = [idx for idx, label in enumerate(data["column_labels"][idx]) if label == 1]
if len(used_column_ids) == 0:
continue
column_pred_probs = list(map(lambda x:round(x,2), data["column_pred_probs"][idx]))
topk_column_ids = np.argsort(-np.array(column_pred_probs), kind="stable")[:opt.topk_column_num].tolist()
column_coverage_state_list.append(lista_contains_listb(topk_column_ids, used_column_ids))
# record top-k1 tables and top-k2 columns for each table
for table_id in topk_table_ids:
new_table_info = dict()
new_table_info["table_name_original"] = data["db_schema"][table_id]["table_name_original"]
column_pred_probs = list(map(lambda x:round(x,2), data["column_pred_probs"][table_id]))
topk_column_ids = np.argsort(-np.array(column_pred_probs), kind="stable")[:opt.topk_column_num].tolist()
new_table_info["column_names_original"] = [data["db_schema"][table_id]["column_names_original"][column_id] for column_id in topk_column_ids]
new_table_info["db_contents"] = [data["db_schema"][table_id]["db_contents"][column_id] for column_id in topk_column_ids]
ranked_data["db_schema"].append(new_table_info)
# record foreign keys among selected tables
table_names_original = [table["table_name_original"] for table in data["db_schema"]]
needed_fks = []
for fk in data["fk"]:
source_table_id = table_names_original.index(fk["source_table_name_original"])
target_table_id = table_names_original.index(fk["target_table_name_original"])
if source_table_id in topk_table_ids and target_table_id in topk_table_ids:
needed_fks.append(fk)
ranked_data["fk"] = needed_fks
input_sequence, output_sequence = prepare_input_and_output(opt, ranked_data)
# record table_name_original.column_name_original for subsequent correction function during inference
tc_original = []
for table in ranked_data["db_schema"]:
for column_name_original in table["column_names_original"] + ["*"]:
tc_original.append(table["table_name_original"] + "." + column_name_original)
_, sql = output_sequence.split("|", 1)
prompt_temple["db_id"] = data["db_id"]
prompt_temple["chat_rounds"][1]["content"] = input_sequence
prompt_temple["chat_rounds"][2]["content"] = sql
output_dataset.append(
copy.deepcopy(prompt_temple)
)
with open(opt.output_dataset_path, "w") as f:
f.write(json.dumps(output_dataset, indent = 2, ensure_ascii = False))
if opt.mode == "eval":
print("Table top-{} coverage: {}".format(opt.topk_table_num, sum(table_coverage_state_list)/len(table_coverage_state_list)))
print("Column top-{} coverage: {}".format(opt.topk_column_num, sum(column_coverage_state_list)/len(column_coverage_state_list)))
if __name__ == "__main__":
opt = parse_option()
random.seed(42)
if opt.mode == "train":
generate_train_ranked_dataset(opt)
elif opt.mode in ["eval", "test"]:
generate_eval_ranked_dataset(opt)
else:
raise ValueError("The mode must be one of the ['train', 'eval', 'test'].")