-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSnakefile
228 lines (206 loc) · 8.93 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#SnakeMake clinical genomic annotation workflow
import pathlib
def list_files():
import os
l=os.listdir('data/samples/')
li=[x.split('.')[0] for x in l]
li_unique=set(li)
li_f=(list(li_unique))
return li_f
SAMPLES = list_files()
#Creat temp dirs if not exists
pathlib.Path('results').mkdir(parents=True, exist_ok=True)
pathlib.Path('results/genome_annotation/').mkdir(parents=True, exist_ok=True)
pathlib.Path('results/genome_islands/').mkdir(parents=True, exist_ok=True)
pathlib.Path('results/plasmid_prediction/').mkdir(parents=True, exist_ok=True)
pathlib.Path('results/prophage_prediction/').mkdir(parents=True, exist_ok=True)
pathlib.Path('results/resistome_prediction/').mkdir(parents=True, exist_ok=True)
pathlib.Path('results/seeds/').mkdir(parents=True, exist_ok=True)
pathlib.Path('results/virulence_prediction/').mkdir(parents=True, exist_ok=True)
# Define default rule to run full pipeline
rule all:
input:
"results/WGCA_analysis_result/plasmid_summary.tsv",
"results/WGCA_analysis_result/virulence_summary.tsv",
"results/WGCA_analysis_result/RGI_heatmap",
"jamira_integrative_results.zip"
rule virulence_identification:
input:
"data/samples/{sample}.fasta"
output:
#report("virulence_prediction/{sample}.tsv", category="Virulence factors")
"results/virulence_prediction/{sample}.tsv"
conda:
"envs/abricate.yaml"
shell:
"abricate --minid=90 --mincov=60 --db=vfdb {input} > {output}"
rule summarize_virulence:
input:
expand("results/virulence_prediction/{sample}.tsv", sample=SAMPLES)
output:
"results/virulence_prediction/summary.tsv"
conda:
"envs/abricate.yaml"
shell:
"abricate --summary {input} > {output}"
rule plasmid_prediction:
input:
"data/samples/{sample}.fasta"
output:
#report("plasmid_prediction/{sample}.tsv", category="Plasmid Prediction")
"results/plasmid_prediction/{sample}.tsv"
conda:
"envs/abricate.yaml"
shell:
"abricate --minid=60 --mincov=90 --db=plasmidfinder {input} > {output}"
rule summarize_plasmid_prediction:
input:
expand("results/plasmid_prediction/{sample}.tsv", sample=SAMPLES)
output:
"results/plasmid_prediction/summary.tsv"
conda:
"envs/abricate.yaml"
shell:
"abricate --summary {input} > {output}"
rule resistome_prediction:
input:
"data/samples/{sample}.fasta"
output:
log = "results/resistome_prediction/{sample}",
#txt = report("resistome_prediction/{sample}.txt", category="Resistance prediction")
txt = "results/resistome_prediction/{sample}.txt"
#txt = "resistome_prediction/{sample}.txt",
#json = "resistome_prediction/{sample}.json"
conda:
"envs/rgi.yaml"
shell:
"rgi main -i {input} -o results/resistome_prediction/{wildcards.sample} -a DIAMOND -t contig --clean --debug > {output.log}"
rule generate_resistome_heatmap:
input:
logs = expand("results/resistome_prediction/{sample}", sample=SAMPLES),
dir = "results/resistome_prediction/"
output:
"results/resistome_prediction/RGI_heatmap"
conda:
"envs/rgi.yaml"
shell:
"rgi heatmap --input {input.dir} --output {output} --category drug_class --cluster samples -d text > {output}"
rule summary_results:
input:
p="results/plasmid_prediction/summary.tsv",
v="results/virulence_prediction/summary.tsv",
r="results/resistome_prediction/RGI_heatmap",
#gi=expand("genomic_islands/{sample}_GI.gff3", sample=SAMPLES),
#rt=expand("resistome_summary/{sample}.txt", sample=SAMPLES),
#pr=expand("prophage_prediction/{sample}/prophage_coordinates.tsv", sample=SAMPLES),
spr="results/prophage_prediction/prophage_summary.tsv",
sgi="results/genomic_islands/GI_summary.tsv"
output:
r="results/WGCA_analysis_result/RGI_heatmap",
v=report("results/WGCA_analysis_result/virulence_summary.tsv", caption="report_description/virulence.rst", category="General"),
p=report("results/WGCA_analysis_result/plasmid_summary.tsv", caption="report_description/plasmid.rst", category="General"),
t=report("results/WGCA_analysis_result/RGI_heatmap-"+str(len(SAMPLES))+".png", caption="report_description/heatmap.rst" , category="General"),
#rr=report(expand("WGCA_analysis_result/{sample}.tsv", sample=SAMPLES), category="Resistance"),
compact=report("jamira_integrative_results.zip", caption="report_description/report.rst", category="General"),
spr=report("results/WGCA_analysis_result/prophage_summary.tsv",caption="report_description/report.rst", category="General"),
rgi=report("results/WGCA_analysis_result/GI_summary.tsv", caption="report_description/report.rst", category="General")
run:
shell("cp {input.p} {output.p}")
shell("cp {input.v} {output.v}")
shell("cp {input.r} {output.r}")
shell("cp results/resistome_prediction/RGI_* results/WGCA_analysis_result/")
shell("cp {input.sgi} results/WGCA_analysis_result/")
#shell("cp {input.rt} WGCA_analysis_result/")
shell("cp {input.spr} results/WGCA_analysis_result/")
shell("cd results/WGCA_analysis_result/ ; rename 's/.txt/.tsv/' *")
#for i,s in zip(input.pr,SAMPLES):
# shell("cp {i} WGCA_analysis_result/{s}_prophage_coordinates.tsv")
shell("zip -r jamira_integrative_results results/plasmid_prediction/ results/prophage_prediction/ results/virulence_prediction/ results/resistome_prediction/ results/genomic_islands/")
rule genome_annotation:
input:
"data/samples/{sample}.fasta"
output:
"results/genome_annotation/{sample}.gbk"
conda:
"envs/prokka.yaml"
shell:
"prokka --force --outdir results/genome_annotation/ --cpus 1 --usegenus --Genus Enterococcus --compliant --prefix {wildcards.sample} {input}"
rule genomic_island_prediction:
input:
"results/genome_annotation/{sample}.gbk"
output:
#report("genomic_islands/{sample}_GI.gff3", category="Genomic Islands")
"results/genomic_islands/{sample}_GI.gff3"
conda:
"envs/island_path.yaml"
shell:
"islandpath {input} {output}"
rule convert_gbk_to_seed:
input:
"results/genome_annotation/{sample}.gbk"
output:
directory("results/seeds/{sample}")
conda:
"envs/phispy.yaml"
shell:
"python scripts/phispy/genbank_to_seed.py {input} {output}"
rule prophage_prediction:
input:
"results/seeds/{sample}"
output:
#d = dir("prophage_prediction/{sample}"),
r1 = "results/prophage_prediction/{sample}/prophage.tbl",
#r2 = report("prophage_prediction/{sample}/prophage_coordinates.tsv", category="Prophages"),
r2 = "results/prophage_prediction/{sample}/prophage_coordinates.tsv",
r3 = "results/prophage_prediction/{sample}/prophage_tbl.tsv"
conda:
"envs/phispy.yaml"
shell:
"scripts/phispy/PhiSpy.py -i {input} -o results/prophage_prediction/{wildcards.sample} -t 25 "
rule summarize_prophage_prediction:
input:
pr=expand("results/prophage_prediction/{sample}/prophage_coordinates.tsv", sample=SAMPLES)
output:
spr="results/prophage_prediction/prophage_summary.tsv"
run:
import csv
print("Saving file to tsv format...")
head = ["Sample","Prophages"]
# write file
with open('results/prophage_prediction/prophage_summary.tsv', 'w', newline='') as f_output:
tsv_output = csv.writer(f_output, delimiter='\t')
tsv_output.writerow(head)
for i in input.pr:
filepath=i
#get number of prophages
n_prophages = len(open(filepath).readlines())
#get filename alias
sample = filepath.split("/")[-2]
data = [sample, n_prophages]
print("sample:",sample," | prophages:",n_prophages)
tsv_output.writerow(data)
print("Done!")
rule summarize_genomic_islands:
input:
gi=expand("results/genomic_islands/{sample}_GI.gff3", sample=SAMPLES)
output:
sgi="results/genomic_islands/GI_summary.tsv"
run:
import csv
print("Saving file to tsv format...")
head = ["Sample","GIs"]
# write file
with open(output.sgi, 'w', newline='') as f_output:
tsv_output = csv.writer(f_output, delimiter='\t')
tsv_output.writerow(head)
for i in input.gi:
filepath=i
#get number of prophages
n_gi = (len(open(filepath).readlines( ))) -1
#get filename alias
sample = filepath.split("_")[-2]
sample = sample.split("/")[-1]
data = [sample, n_gi]
print("sample:",sample," | genomic_islands:",n_gi)
tsv_output.writerow(data)
print("Done!")