forked from CanBul/recompy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathALS.py
142 lines (115 loc) · 5.82 KB
/
ALS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
class ALS():
def __init__(self, n_iterations, n_factors, regularization):
self.regularization = regularization
self.n_iterations = n_iterations
self.n_factors = n_factors
def _set_data(self):
n_users = len(np.unique(self.data[:,0]))
n_items = len(np.unique(self.data[:,1]))
new_item_ids = np.arange(0, n_items)
new_user_ids = np.arange(0, n_users)
self.item_ids_old_new = np.column_stack([np.unique(self.data[:,1]), new_item_ids])
self.user_ids_old_new = np.column_stack([np.unique(self.data[:,0]), new_user_ids])
ratings = np.zeros((n_users, n_items))
for i in range(0, self.data.shape[0]):
row = arr[i,:]
item_column_index = self.item_ids_old_new[self.item_ids_old_new[:,0] == row[1]][:,1]
user_row_index = self.user_ids_old_new[self.user_ids_old_new[:,0] == row[0]][:,1]
ratings[int(user_row_index), int(item_column_index)] = row[2]
self.ratings = ratings
def train_test_split(self, test_portion = 0.1):
test = np.zeros(self.ratings.shape)
train = self.ratings.copy()
test_set_size = test_portion * self.rating_length
print(test_set_size)
test_set_size_counter = 0
# randomize users
for user in range(self.ratings.shape[0]):
test_index = np.random.choice(
np.flatnonzero(self.ratings[user]), size = 3, replace = False)
train[user, test_index] = 0.0
test[user, test_index] = self.ratings[user, test_index]
test_set_size_counter += len(test_index)
if test_set_size_counter > test_set_size:
break
assert np.all(train * test == 0)
return train, test
def fit(self, data, test_portion = 0.1):
self.data = data
self.rating_length = data.shape[0]
self._set_data()
self.train, self.test = self.train_test_split(test_portion)
self.n_user, self.n_item = self.train.shape
self.user_factors = np.random.random((self.n_user, self.n_factors))
self.item_factors = np.random.random((self.n_item, self.n_factors))
self.test_mse_record = []
self.train_mse_record = []
print("Training has started.")
for n in range(self.n_iterations):
self.user_factors = self._als_step(self.train, self.user_factors, self.item_factors)
self.item_factors = self._als_step(self.train.T, self.item_factors, self.user_factors)
predictions = self.predict()
predictions[predictions <= 0] = 0.5
predictions[predictions > 5] = 5
test_mse = self.compute_mse(self.test, predictions)
train_mse = self.compute_mse(self.train, predictions)
if(n % 10 == 0):
print("Iteration number ", n)
print("Train error is: ", train_mse)
print("Test error is: ", test_mse)
self.test_mse_record.append(test_mse)
self.train_mse_record.append(train_mse)
return self
def _als_step(self, ratings, solve_vecs, fixed_vecs):
A = fixed_vecs.T.dot(fixed_vecs) + np.eye(self.n_factors) * self.regularization
b = ratings.dot(fixed_vecs)
A_inv = np.linalg.inv(A)
solve_vecs = b.dot(A_inv)
return solve_vecs
def predict(self):
pred = self.user_factors.dot(self.item_factors.T)
return pred
def mean_squared_difference(a, b):
summation = 0
n = len(a)
for i in range(0, n):
difference = a[i] - b[i]
squared_difference = difference**2
summation = summation + squared_difference
MSE = summation/n
return np.sqrt(MSE)
def _calculate_similarity(self, new_user):
unique_user_ids = np.unique(self.data[:,0])
similarities = []
new_user_items = list(new_user.keys())
new_user_ratings = list(new_user.values())
intersected_item_index = self.item_ids_old_new[np.isin(self.item_ids_old_new[:,0], new_user_items)][:,1]
intersected_item_index = list(intersected_item_index)
intersected_item_index = [ int(x) for x in intersected_item_index ]
user_ratings = self.ratings[:,list(intersected_item_index)]
self.similarities = []
for uid in unique_user_ids:
user_information_index = int(self.user_ids_old_new[self.user_ids_old_new[:,0] == uid][:,1])
unique_user_rating = list(user_ratings[user_information_index])
unique_user_rating = [ int(x) for x in unique_user_rating]
mse = ALS.mean_squared_difference(list(unique_user_rating), new_user_ratings)
sim = [uid, user_information_index, mse]
self.similarities.append(sim)
def get_recommendation_for_new_user(self, new_user, howManyUsers, howManyItems):
self._calculate_similarity(new_user)
self.similarities = np.asarray(self.similarities)
self.similarities = self.similarities[self.similarities[:,2].argsort()]
users_to_be_used = self.similarities[:howManyUsers]
user_indexes = (list(users_to_be_used[:,1]))
user_indexes = [int(x) for x in user_indexes]
user_rating_matrix = self.ratings[user_indexes,]
recommended_items_with_new_id = np.where(user_rating_matrix > 3.5)[1]
indices = np.random.choice(len(recommended_items_with_new_id), howManyItems, replace=False)
recommended_items_with_new_id = recommended_items_with_new_id[indices]
recommended_items_with_old_id = self.item_ids_old_new[np.isin(self.item_ids_old_new[:,1], recommended_items_with_new_id)][:,0]
return(recommended_items_with_old_id)
def compute_mse(self, y_true, y_pred):
mask = np.nonzero(y_true)
mse = ALS.mean_squared_difference(y_true[mask], y_pred[mask])
return mse