-
Notifications
You must be signed in to change notification settings - Fork 1
/
mkdocs.yml
289 lines (271 loc) · 11.6 KB
/
mkdocs.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# mkdocs.yml
site_name: "Time Series with Deep Learning Quick Bite"
site_author: "Lei Ma"
site_description: "Time Series with Deep Learning Quick Bite"
site_url: "https://emptymalei.github.io/deep-learning"
repo_url: "https://github.com/emptymalei/deep-learning"
edit_uri: "blob/main/deep-learning/"
repo_name: "emptymalei/machine-learning"
docs_dir: "dl"
theme:
name: "material"
custom_dir: theme/overrides
# Don't include MkDocs' JavaScript
include_search_page: false
search_index_only: true
# Default values, taken from mkdocs_theme.yml
language: en
features:
# - navigation.instant
- navigation.sections
- navigation.tabs
palette:
- scheme: default
primary: black
accent: deep orange
toggle:
icon: material/toggle-switch-off-outline
name: Switch to dark mode
- scheme: slate
primary: red
accent: red
toggle:
icon: material/toggle-switch
name: Switch to light mode
font:
text: Roboto
code: Roboto Mono
favicon: assets/logo_badge.svg
logo: assets/logo_badge.svg
markdown_extensions:
- admonition
- abbr
- attr_list
- md_in_html
- pymdownx.emoji:
emoji_index: !!python/name:material.extensions.emoji.twemoji
emoji_generator: !!python/name:material.extensions.emoji.to_svg
- pymdownx.magiclink
- pymdownx.snippets:
check_paths: true
- pymdownx.superfences:
custom_fences:
- name: mermaid
class: mermaid
format: !!python/name:pymdownx.superfences.fence_code_format
- pymdownx.tabbed:
alternate_style: true
- pymdownx.tasklist
- pymdownx.arithmatex:
generic: true
- toc:
permalink: "¶"
- footnotes
- pymdownx.details
extra_javascript:
- assets/js/mathjax.js
- https://polyfill.io/v3/polyfill.min.js?features=es6
- https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js
plugins:
- autorefs
- git-authors
- search
- exclude-search:
exclude:
- notebooks/tree_darts
- tags:
tags_file: tags.md
- bibtex:
bib_dir: "dl/assets/references"
csl_file: "dl/assets/csl/nature-publishing-group-vancouver.csl" # https://github.com/citation-style-language/styles/blob/master/nature-publishing-group-vancouver.csl
- mkdocs-jupyter:
include: ["*.py"]
ignore: ["notebooks/.ipynb_checkpoints/*"]
include_source: true
execute: false
- print-site:
add_to_navigation: false
print_page_title: 'Time Series with Deep Learning'
add_print_site_banner: false
# Table of contents
add_table_of_contents: true
toc_title: 'Table of Contents'
toc_depth: 6
# Content-related
add_full_urls: false
enumerate_headings: true
enumerate_figures: true
include_css: true
enabled: true
exclude:
# - with-pdf:
# author: "Lei Ma"
# output_path: pdf/dl-lm.pdf
# cover_logo: assets/logo_badge.svg
# cover_subtitle: "Deep Learning Quick Bite"
# two_columns_level: 3
# enabled_if_env: ENABLE_PDF_EXPORT
# render_js: true
# headless_chrome_path: "/Applications/Google\ Chrome.app/Contents/MacOS/Google\ Chrome"
#######
# For Linux
# - with-pdf:
# author: "Lei Ma"
# output_path: pdf/dl-lm.pdf
# cover_logo: assets/logo_badge.svg
# cover_subtitle: "Time Series with Deep Learning Quick Bite"
# two_columns_level: 3
# enabled_if_env: ENABLE_PDF_EXPORT
# render_js: true
# headless_chrome_path: "google-chrome"
extra:
analytics:
provider: google
property: G-9XN0RGHSE1
feedback:
title: Was this page helpful?
ratings:
- icon: material/emoticon-happy-outline
name: This page was helpful
data: 1
note: >-
Thanks for your feedback!
- icon: material/emoticon-sad-outline
name: This page could be improved
data: 0
note: >-
Thanks for your feedback! Help us improve this page by
using our <a href="https://github.com/emptymalei/deep-learning/issues" target="_blank" rel="noopener">GitHub Issues or Discussions</a>.
consent:
title: Cookie consent
description: >-
We use cookies to recognize your repeated visits and preferences, as well
as to measure the effectiveness of our documentation and whether users
find what they're searching for. With your consent, you're helping us to
make our documentation better.
social:
- icon: fontawesome/brands/github
link: https://github.com/emptymalei/deep-learning
- icon: fontawesome/brands/linkedin
link: https://www.linkedin.com/in/leima137/
nav:
- "Home": index.md
- "Engineering Tips":
- engineering/index.md
- "Python": engineering/python.md
- "Fundamentals of Time Series Forecasting":
- time-series/index.md
- "Time Series Data":
- "Terminologies of Time Series Data": time-series/timeseries-data.analysis.md
- "Box-Cox Transformation": time-series/timeseries-data.box-cox.md
- "Two-way Fixed Effects": time-series/timeseries-data.analysis.twfe.md
- "Time Delayed Embedding": time-series/timeseries-data.time-delayed-embedding.md
- "Data Generating Process":
- "DGP": time-series/timeseries-datasets.dgp.md
- "DGP: Langevin Equation": time-series/timeseries-datasets.dgp.langevin.md
- "Kindergarten Models":
- "Statistical Models": time-series/timeseries-basics.statistical-models.md
- "AR": "time-series/timeseries-basics.ar.md"
- "VAR": time-series/timeseries-basics.var.md
- "Synthetic Datasets":
- "Synthetic Time Series": time-series/timeseries-synthetic.md
- "Creating Synthetic Dataset": time-series/timeseries-datasets.synthetic.md
- "Augmentation": time-series/timeseries-data.data-augmentation.md
- "Forecasting":
- "Time Series Forecasting Tasks": time-series/timeseries-forecast.tasks.md
- "Naive Forecasts": time-series/timeseries-forecast.naive.md
- "Evaluation and Metrics":
- "Time Series Forecasting Evaluation": time-series/timeseries-evaluation.forecasting.md
- "Time Series Forecasting Metrics": time-series/timeseries-metrics.forecasting.md
- "CRPS": time-series/timeseries-metrics.forecasting.crps.md
- "Hierarchical Time Series":
- "Hierarchical Time Series Data": time-series/timeseries-hierarchical.data.md
- "Hierarchical Time Series Reconciliation": time-series/timeseries-hierarchical.reconciliation.md
- "Useful Datasets":
- time-series/timeseries-datasets.md
- "Exchange Rate": time-series/timeseries-datasets.ecb-exchange-rate.md
- "NREL Solar Power Data": time-series/timeseries-datasets.nrel-solar-energy.md
- "Electricity": time-series/timeseries-datasets.uci-electricity.md
- "PeMS Traffic Data": time-series/timeseries-datasets.pems.md
- "Trees":
- "Tree-based Models": trees/tree.basics.md
- "Random Forest": trees/tree.random-forest.md
- "Gradient Boosted Trees": trees/tree.gbdt.md
- "Forecasting with Trees": trees/tree.darts.md
- "Fundamentals of Deep Learning":
- "Deep Learning Introduction": deep-learning-fundamentals/index.md
- "Learning from Data": deep-learning-fundamentals/learning.md
- "Neural Networks": deep-learning-fundamentals/neural-net.md
- "Recurrent Neural Networks": deep-learning-fundamentals/recurrent-neural-networks.md
- "Convolutional Neural Networks": deep-learning-fundamentals/convolutional-neural-networks.md
- "Transformers":
- "Vanilla Transformers": transformers/transformers.vanilla.md
- "Dynamical Systems":
- "Why Dynamical Systems": "dynamical-systems/index.md"
- "Neural ODE": "dynamical-systems/neural-ode.md"
- "Energy-based Models":
- "Introduction": energy-based-models/intro.md
- "Diffusion Models": energy-based-models/ebm.diffusion.md
- "Generative Models":
- "Introduction": self-supervised/generative/intro.md
- "Autoregressive": self-supervised/generative/autoregressive.md
- "AE": self-supervised/generative/ae.md
- "VAE": self-supervised/generative/vae.md
- "Flow": self-supervised/generative/flow.md
- "GAN": self-supervised/adversarial/gan.md
- "Time Series Forecasting with Deep Learning":
- "Introduction": "time-series-deep-learning/index.md"
- "Pendulum Dataset": "time-series-deep-learning/timeseries.dataset.pendulum.md"
- "Forecasting with MLP": "time-series-deep-learning/timeseries.feedforward.md"
- "Forecasting with RNN": time-series-deep-learning/timeseries.rnn.md
- "Forecasting with Transformers": "time-series-deep-learning/timeseries.transformer.md"
- "Forecasting with CNN": "time-series-deep-learning/timeseries.cnn.md"
- "Forecasting with VAE": "time-series-deep-learning/timeseries.vae.md"
- "Forecasting with Flow": "time-series-deep-learning/timeseries.flow.md"
- "Forecasting with GAN": "time-series-deep-learning/timeseries.gan.md"
- "Forecasting with Neural ODE": time-series-deep-learning/timeseries.neural-ode.md
- "Forecasting with Diffusion Models": time-series-deep-learning/timeseries.deep-learning.timegrad.md
- "Supplementary":
- "About Supplementary Materials": supplementary.md
- "How to Run Our Notebooks": utilities/notebooks-and-utilities.md
- "Notebooks":
- "Box-Cox Transformation": notebooks/timeseries_data_box-cox.py
- "Pendulum Dataset": notebooks/pendulum_dataset.py
- "Hierarchical Forecasting Using MinT": notebooks/hierarchical_forecasting_mint.py
- "Tree Basics": notebooks/tree_basics.py
- "Random Forest Basics": notebooks/tree_random_forest.py
- "Forecasting with Random Forest using Darts": notebooks/tree_darts_random_forest.py
- "Forecasting with GBDT using Darts": notebooks/tree_darts_boosted_tree.py
- "Creating Time Series Dataset (PyTorch)": notebooks/creating_time_series_datasets.py
- "Forecasting with Feedforward Neural Networks": notebooks/feedforward_neural_netwroks_timeseries.py
- "Forecasting with RNN": notebooks/rnn_timeseries.py
- "Forecasting with Transformer": notebooks/transformer_timeseries_univariate.py
- "Forecasting with NeuralODE": notebooks/neuralode_timeseries.py
- "Generate Time Series Using Statistics": notebooks/time-series-data-generation.py
- "Generate Time Series Using VAE": notebooks/time_vae.py
- "Comparing Time Series": notebooks/timeseries-comparison.py
- "Small Yet Powerful Concepts":
- concepts/index.md
- "Entropy": concepts/entropy.md
- "Mutual Information": concepts/mutual-information.md
- "KL Divergence": concepts/kl-divergence.md
- "f-divergence": concepts/f-divergence.md
- "ELBO": concepts/elbo.md
- "Alignment and Uniformity": concepts/alignment-and-uniformity.md
- "Gini Impurity": concepts/gini-impurity.md
- "Information Gain": concepts/information-gain.md
- "Generalization": concepts/generalization.md
- "DTW": concepts/timeseries-data.dtw.md
- "DBA": concepts/timeseries-data.dtw-barycenter-averaging.md
- "Other Deep Learning Topics":
- "Contrastive":
- "Introduction": self-supervised/contrastive/intro.md
- "Deep Infomax": self-supervised/contrastive/deep-infomax.md
- "Contrastive Predictive Coding": self-supervised/contrastive/contrastive-predictive-coding.md
- "MADE": self-supervised/generative/made.md
- "MAF": self-supervised/generative/maf.md
- "f-GAN": self-supervised/adversarial/f-gan.md
- "InfoGAN": self-supervised/adversarial/infogan.md
- "About":
- "Roadmap": meta/roadmap.md
- "Changelog": meta/changelog.md