forked from felixchenfy/ros_openpose_rgbd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lib_openpose_detector.py
241 lines (202 loc) · 8.61 KB
/
lib_openpose_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
'''
Openpose detector class.
'''
import sys
import cv2
import os
from sys import platform
import argparse
import time
import numpy as np
from tempfile import TemporaryFile
if True: # Import openpose
OPENPOSE_PYTHONPATH = os.environ['OPENPOSE_PYTHONPATH']
sys.path.append(OPENPOSE_PYTHONPATH)
from openpose import pyopenpose as op
ROOT = os.path.dirname(os.path.abspath(__file__))+'/'
''' -------------------------------------- Settings -------------------------------------- '''
OPENPOSE_HOME = os.environ['OPENPOSE_HOME'] + "/"
MODEL_PATH = OPENPOSE_HOME + "models/"
''' ------------------------------- Command line arguments ------------------------------- '''
class OpenposeDetector(object):
def __init__(self, keys_params={}):
self._params = self.set_default_params()
self.set_params(keys_params=keys_params)
assert(self._params["face"] == False) # I haven't added this.
self._opWrapper = op.WrapperPython()
self._opWrapper.configure(self._params)
self._opWrapper.start() # Start Openpose.
self._datum = None
def detect(self, color_image, is_return_joints=False):
'''
Arguments:
color_image {image}: shape=[rows, cols, 3]; type=np.uint8.
Return:
datum {op.Datum()}: Detect results are stored here.
datum.poseKeypoints {np.ndarray}:
shape = [P, N, 3]; type = np.float32.
P: Number of detected human bodies.
N: N body joints defined by the detector model, such as COCO and MPI.
3: [pixel_column, pixel_row, confidence].
The not-detected joint has a [0., 0., 0.] value.
datum.poseKeypoints {np.ndarray}:
When there are no humans detected,
this variable becomes a number of the type np.ndarray???
datum.handKeypoints {list}:
List length is 1 or 2, which are the left hand and the right hand.
Each element is a np.ndarray of shape = [P, M, 3]
P and 3 have the same meaning as `poseKeypoints`.
datum.handKeypoints {list}:
When there are no humans detected,
this variable becomes a list with two numbers???
body_joints {np.ndarray}:
[P, N, 3]. P is humans number; N is joints number.
body_joints {list or np.ndarray}:
If params["hand"] == False, return [None]*number_of_people
Else if no human, return [];
Else, return np.ndarray of dimension [P, 2, N, 3]
For model definition, please see:
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/output.md
'''
datum = op.Datum()
datum.cvInputData = color_image
self._opWrapper.emplaceAndPop(op.VectorDatum([datum]))
self._datum = datum
# print("Body keypoints: \n" + str(datum.poseKeypoints))
# print("Hand keypoints: \n" + str(datum.handKeypoints))
if is_return_joints:
body_joints = datum.poseKeypoints
if body_joints is None:
body_joints = []
if len(body_joints) == 0: # Detect no people.
body_joints = []
number_of_people = len(body_joints)
body_joints = np.array(body_joints)
if number_of_people == 0:
hand_joints = []
else:
if self._params["hand"] == False:
# The joints of each person is None.
hand_joints = [None] * number_of_people
else:
hand_joints = np.array(datum.handKeypoints)
hand_joints = hand_joints.swapaxes(
0, 1) # reshape to [P, 2, M, 3]
return body_joints, hand_joints
else:
return datum
def save_joints_positions(self, datum, pose_filename, hand_filename=None):
''' Save body and hand joints to two binary files.
For the data type of `datum`, see `def detect`.
'''
def save_binary(filename, data):
if data is not None:
np.save(filename, np.array(data))
def save_txt(filename, data):
if data is not None:
np.savetxt(filename, np.array(data), delimiter=",")
save_binary(pose_filename, datum.poseKeypoints)
save_binary(hand_filename, datum.handKeypoints)
print(datum.handKeypoints)
# To load the data, use:
# bodies_joints = np.load(pose_filename)
# hands_joints = np.load(hand_filename)
def set_default_params(self):
# Refer to $OPENPOSE_HOME/include/openpose/flags.hpp for more parameters.
params = dict()
params["model_folder"] = MODEL_PATH
params["face"] = False # I haven't done this.
params["hand"] = True
params["net_resolution"] = "320x240" # e.g.: "240x160"
# params["net_resolution"] = "640x480" # e.g.: "240x160"
params["model_pose"] = "COCO" # Please use "COCO".
params["number_people_max"] = 1
return params
def set_params(self,
command_line_args=[],
keys_params={}):
''' Set openpose params in place.
Arguments:
command_line_args {list}:
e.g.: ["--hand", False, "--model_pose", "COCO"]
keys_params {dict}:
e.g.: {"hand": False, "model_pose": "COCO"}
'''
if not isinstance(command_line_args, list):
raise RuntimeError("`command_line_args` should be list!")
if not isinstance(keys_params, dict):
raise RuntimeError("`keys_params` should be dict!")
params = self._params
if command_line_args:
args = command_line_args
for i in range(0, len(args[1])):
curr_item = args[1][i]
if i != len(args[1])-1:
next_item = args[1][i+1]
else:
next_item = "1"
if "--" in curr_item and "--" in next_item:
key = curr_item.replace('-', '')
if key not in params:
params[key] = "1"
elif "--" in curr_item and "--" not in next_item:
key = curr_item.replace('-', '')
if key not in params:
params[key] = next_item
if keys_params:
for key, param in keys_params.items():
params[key] = param
return params
def get_img_viz(self):
return self._datum.cvOutputData
def makedir(folder):
folder = os.path.dirname(folder)
if not os.path.exists(folder):
os.makedirs(folder)
''' -------------------------------------- Unit Test -------------------------------------- '''
def test_openpose_on_images():
# -- Settings.
DST_FOLDER = ROOT + "output/"
# -- Command line arguments.
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--image_dir",
default=ROOT+"data/image_i1/color/",
help="Process a directory of images. "
"Read all standard formats (jpg, png, bmp, etc.).")
args = parser.parse_known_args()
return args
args = parse_args()
# -- Setup detector.
detector = OpenposeDetector(
# keys_params={"hand": False}
)
# -- Output folder.
makedir(DST_FOLDER)
# -- Read images and detect.
imagePaths = op.get_images_on_directory(args[0].image_dir)
for i, imagePath in enumerate(imagePaths):
t0 = time.time()
# Read image.
color_image = cv2.imread(imagePath)
# Detect human skeletons.
datum = detector.detect(color_image)
print("Image {}/{}. Total time = {} seconds.".format(
i+1, len(imagePaths), time.time()-t0))
# Save.
s = DST_FOLDER + "{:05d}".format(i) + "_"
filename_body = s + "body_joints.npy"
filename_hand = s + "hand_joints.npy"
filename_image = s + "result.jpg"
detector.save_joints_positions(
datum, filename_body, filename_hand)
image_with_skeletons_on_it = datum.cvOutputData
cv2.imwrite(filename_image, image_with_skeletons_on_it)
print(" Write results to: " + s + "***")
# Show.
cv2.imshow("Detection Result", image_with_skeletons_on_it)
key = cv2.waitKey(15)
if key == 27:
break
if __name__ == '__main__':
test_openpose_on_images()